
www.manaraa.com

DISTRIBUTED GRAPH DECOMPOSITION ALGORITHMS

ON APACHE SPARK

A Thesis

Submitted to the Faculty

of

Purdue University

by

Aritra Mandal

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2018

Purdue University

Indianapolis, Indiana

www.manaraa.com

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Mohammad Al Hasan, Chair

Department of Computer and Information Science

Dr. George Mohler

Department of Computer and Information Science

Dr. Fengguang Song

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

Head of the Graduate Program

www.manaraa.com

iii

I dedicate this work to my beloved parents and dearest friends and amazing siblings.

This humble work is my tribute to you all.

www.manaraa.com

iv

ACKNOWLEDGMENTS

The success of this research is a result of constant support of faculty advisors,

friends and family. I would like to take this opportunity to thank those few who were

paramount in making this research a success. First and foremost, I would like to

thank my thesis advisor, Dr. Mohammad Al Hasan, for his guidance, encouragement

and valuable lessons in machine learning throughout my research. Dr. Hasan with is

immense patience, guided me with my various publication and research work. He gave

me the liberty to find my own research direction while giving me constant guidance

so that I don‘t stray from my goal. His capacity to explain concepts with clarity and

simplicity helped me cross many of my research hurdles. He mentored me in gaining

a good research aptitude.

I am also grateful to the thesis committee members, Dr. George Mohler, and Dr.

Fengguang Song for giving me the opportunity to pursue my thesis.

I would like to thank my parents for their constant support and motivation

throughout my Master‘s education. They have always been the roots of all my

achievements. I would also like to express my gratitude to my friends for their con-

stant support and inspiration.

I would also like to thank my lab mates for making my work here fun and for the

constructive and collaborative environment. They collaborated with me in several

research work and provide me useful advise and direction as and when required.

Lastly, I feel indebted to the opportunities given to me by IUPUI, through the

knowledge I acquired from courses and the guidance I received from professors through-

out my Master‘s education.

www.manaraa.com

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . ix

ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 k-core . 2

1.2 k-truss . 4

1.3 GraphX on Apache Spark: Implementation Framework 5

1.4 Contribution of this Thesis . 6

2 RELATED WORKS . 7

2.1 Reseach Reated to Graph Decomposition 7

2.2 Research related to k-core decomposition 9

2.3 Research related to distributed triangle enumeration and counting . . . 11

2.4 Research related to k-truss decomposition 13

3 BACKGROUND . 15

3.1 Definitions related to k-Core . 15

3.2 Definition related to k-Truss . 16

4 K-CORE . 18

4.1 Methods of computing k-Core . 18

4.1.1 Distributed k-core algorithm . 18

4.1.2 Distributed k-core Implementation on Apache Spark 21

4.2 Experiments . 24

www.manaraa.com

vi

Page

4.2.1 Experiment Setup . 24

4.2.2 Experimental Results . 24

5 DISTRIBUTED TRIANGLE ENUMERATION AND COUNTING 31

5.1 Distributed triangle enumeration algorithm 31

5.1.1 Distributed node iterator based algorithm 32

5.1.2 Proposed distributed algorithm on GraphX 34

5.2 Experiments . 36

5.2.1 Experimental Setup . 36

5.2.2 Experimental Results . 37

6 K-TRUSS . 39

6.1 Methods of Computing k-Truss . 39

6.1.1 Distributed k-truss algorithm based on map-reduce 39

6.1.2 Distributed graph parallel k-truss algorithm 44

6.2 Experiments . 49

6.2.1 Experiment Setup . 49

6.2.2 Experimental Results . 50

7 SUMMARY . 57

8 FUTURE WORK . 58

REFERENCES . 59

VITA . 66

PUBLICATIONS . 67

www.manaraa.com

vii

LIST OF TABLES

Table Page

4.1 Table of results showing the No. of vertices, Edges, Maximum k-core,
running time and the number of Pregel iterations in Spark-kCore. 25

4.2 Running time comparison between Turi Graphlabs and Spark-kcore 28

4.3 Running time comparison between EMCore and Spark-kcore 30

5.1 Table showing running time in minutes of Spark-Edge-Triangle and NodeIt-
eratorMR . 38

6.1 Table of results showing the No. of vertices, Edges, Maximum k-truss,
running time and the number of MapReduce iterations on real life graphs. 51

6.2 Table of results showing the No. of vertices, Edges, Maximum k-truss,
running time and the number of MapReduce iterations on 4 synthetic graphs.51

6.3 Table of results showing the No. of vertices, Edges, Maximum k-truss,
running time and the number of Pregel iterations in Spark-kTruss on real
life graphs. 53

6.4 Table of results showing the No. of vertices, Edges, Maximum k-truss,
running time and the number of Pregel iterations in Spark-kTruss on on
4 synthetic graphs. 54

www.manaraa.com

viii

LIST OF FIGURES

Figure Page

1.1 A toy graph and its k-core decomposition 3

1.2 A toy graph and its k-truss decomposition 5

3.1 A example graph G . 15

4.1 The k-core update flow for one iteration for the vertex d 20

4.2 Comparison of running time with number of edges fro Spark-kCore 26

4.3 Change in k-core value . 27

4.4 Comparison between Spark-kCore and Graphlab 29

4.5 Comparison between Spark-kCore and EMCore 30

5.1 Spark-Edge-Triangle operation example . 35

5.2 Comparison spark-edge-triangle with NodeIteratorMR 38

6.1 One iteration of Spark-kTruss-MR on the edge (a, b) 41

6.2 One iteration of Spark-kTruss on the edge (a, b) 46

6.3 Running time Vs number of edges for Spark-kTruss-MR 52

6.4 Running time Vs number of edges for Spark-kTruss 53

6.5 Convergence of max k-truss value. 55

6.6 Comparison between speedup of Spark-kTruss and Spark-kTruss-MR . . . 55

6.7 Comparison between Iterations of Spark-kTruss and Spark-kTruss-MR . . 56

www.manaraa.com

ix

SYMBOLS

∀ For all elements in set

∃ Their exist an element in set

@ Their does not exist an element in set

∪ Union of sets

∩ Intersection of sets

\ Difference of two sets

www.manaraa.com

x

ABBREVIATIONS

RDD Resilient Distributed Datasets

HDD Hard Disk Drive

SSD Solid State Drive

MR Map-Reduce

www.manaraa.com

xi

GLOSSARY

Map-Reduce A distributed programming paradigm which uses a combination

of Map and reduce functions do transformation on data.

Pregel A programming paradigm oriented toward graph-based algo-

rithms.

Hadoop An open source programming framework for processing and stor-

age of large data in distributed manner.

Spark A engine for handling large-scale in memory data processing

www.manaraa.com

xii

ABSTRACT

Mandal, Aritra M.S., Purdue University, May 2018. Distributed Graph Decomposi-
tion Algorithms on Apache Spark. Major Professor: Md. Al Hassan.

Structural analysis and mining of large and complex graphs for describing the

characteristics of a vertex or an edge in the graph have widespread use in graph

clustering, classification, and modeling. There are various methods for structural

analysis of graphs including the discovery of frequent subgraphs or network motifs,

counting triangles or graphlets, spectral analysis of networks using eigenvectors of

graph Laplacian, and finding highly connected subgraphs such as cliques and quasi-

cliques. Unfortunately, the algorithms for solving most of the above tasks are quite

costly, which makes them not-scalable to large real-life networks.

Two such very popular decompositions, k-core and k-truss of a graph give very

useful insight about the graph vertex and edges respectively. These decompositions

have been applied to solve protein functions reasoning on protein-protein networks,

fraud detection and missing link prediction problems.

k-core decomposition with is linear time complexity is scalable to large real-life

networks as long as the input graph fits in the main memory. k-truss on the other

hands is computationally more intensive due to its definition relying on triangles and

their is no linear time algorithm available for it.

In this paper, we propose distributed algorithms on Apache Spark for k-truss and

k-core decomposition of a graph. We also compare the performance of our algorithm

with state-of-the-art Map-Reduce and parallel algorithms using openly available real-

world network data. Our proposed algorithms have shown substantial performance

improvement.

www.manaraa.com

1

1. INTRODUCTION

Structural analysis and mining of large and complex graphs is a well studied and

prominent research direction having wide-spread applications in graph clustering,

classification, and modeling. There are various methods for structural analysis of

graphs including, the discovery of frequent subgraphs or network motifs [1], counting

triangles or graphlets [2], spectral analysis of networks using eigenvectors of graph

Laplacian [3], or finding highly connected subgraphs, such as cliques and quasi-

cliques [4]. The above tasks help to identify small subgraphs, which are building

blocks of large, real-life networks, and hence, these subgraphs can, subsequently, be

used for solving tasks such as community discovery, building features for graph in-

dexing or classification, and graph partitioning.

Structural analysis of graphs can also be used for obtaining graph metrics per-

taining to a vertex or an edge by utilizing the number of distinct structural patterns

to which a vertex or an edge participates. For instance, we can label a vertex or an

edge by the number of cliques, graphlets, k-cores, k-trusses or k-plexes, it touches.

Such labeling enables us to identify relatively important vertices in a large network—a

knowledge which has many applications in real life. For instance, in viral marketing,

the important vertices can be used to facilitate or block a viral diffusion process over

a network [5, 6]. Important vertices are also instrumental for solving the problem of

group formation for impromptu activities [7,8]. Important edges identified by k-plex

structural patterns have been shown to capture the dynamics of a social network [9].

In massive networks, identification of cohesive subgraphs is often more fruitful,

and more feasible as it emphasizes the focus on smaller but more important areas of

the network. It helps find subgraphs that can be used to study, important properties

of the network such as connectivity, robustness, self similarity, and centrality [10].

www.manaraa.com

2

Cliques [11] and maximal cliques [12] are some of the basic cohesive subgraph

measures identified, but both these measures have very rigid definitions, and produce

cohesive subgraphs which are small and scattered. The produced subgraphs may

either largely overlap each other or are disconnected from the rest. More relaxed

definitions of cohesive subgraphs like n-clique [13] which relaxes the distance between

nodes in a clique from 1 to n, k-plex [14] which relaxes the degree requirement of a

vertex in a clique from (n − 1) to (n − k), n-clan and n-club [15] have been identi-

fied. The quasi-clique methods of identifying cohesive subgraphs impose relaxation

on either density or the degree [16] [17].

Unfortunately, the algorithms for solving the majority of the above tasks are

computationally NP-hard which makes them not-scalable to large real-life networks.

So, scalable tools for structural analysis of massive networks are of high demand to

meet the need of today’s graphs that have millions of vertices and edges.

k-core and k-truss are two such cohesive subgraph decompositions of graph which

is computationally more efficient than other quasi-clique decomposition techniques.

k-core is a decomposition technique based on the neighbors of an vertex and can be

viewed as an quasi-clique achieved by degree relaxation on the vertex. k-truss is a

decomposition of a graph which is based on edge property, this decomposition can

be thought of as a quasi-clique with density relaxation on the decomposed subgraph.

k-core was described by Seidman [14] as a seedbed within which cohesive subgraphs

may precipitate. In the following subsections, I will provide a brief discussion of

k-core, k-truss, and GraphX on Apache Spark.

1.1 k-core

In recent years, k-core (also called k-shells) decomposition of graphs has emerged

as an effective and low-cost alternative for structural analysis of large networks. To

date, k-core decomposition has been used for studying Internet topology [18], and also

to study hierarchy, and self-similarity in Internet graph [19], for studying structural

www.manaraa.com

3

composition of brain networks [20], for identifying influential spreaders in complex

networks [21], for building data structures for graph clustering [22], and for computing

lower bound to prune search space while searching for maximum cliques [23]. The

salient feature that enables k-core decomposition as a leading structural analysis tool

is its linear runtime which makes it scalable to large real-life networks with millions

of vertices and edges. k-core decomposition has also been successfully applied to the

task of large network visualization [24] [25], protein functions reasoning from protein-

protein networks [26], fraud detection [27] and missing link prediction [28] [29]. k-

core decomposition of a network has also proved to be be successful in approximating

the densest subgraph, and the densest at-least-k-subgraphs problems for community

detection [30].

a b

d c

f e

m

g
j

k

l i h

1-core
2-core
3-core

Figure 1.1.: A toy graph and its k-core decomposition

k-core decomposition of a graph G is partitioning the vertices of G based on its

“coreness”; in this partitioning, vertices belonging to the core of a given k value form

the k-cores of G. A k-core of G is an induced subgraph of G such that all nodes of that

subgraph have a degree (in that subgraph) at least equal to k. Informally, k-cores can

be obtained by removing all vertices of degree less than or equal to k, until the degree

of all remaining vertices is larger than or equal to k. By definition, k-core partitions

are concentric, i.e., if a node belongs to K-core for a given k = K, it also belongs to

the k-core for all k values from 1 to K; thus the coreness of a vertex is determined by

www.manaraa.com

4

the largest k value for which the vertex participates in a k-core. Vertices belonging to

the largest core value occupy the central position of the network and thus they play

a larger role in the composition of a network. See Figure 1.1 for a graph in its k-core

decomposed form. The largest core in this graph is a 3-core consisting of the vertices

a, b, c and d.

1.2 k-truss

Similar to k-core, k-truss is also a cohesive subgraph decomposition of a graph,

but unlike k-core, which is a vertex centric decomposition, k-truss is an edge-centric

decomposition of a graph G. In other words, for the case of k-core we compute the

core-value of a vertex, but for the case of k-truss we compute the truss value of an

edge. The subgraph induced by the edges of truss value k (or more) forms the k-truss

of a graph.

k-truss generates cohesive sub graphs which are hierarchical in nature and gives

cohesive structure of varying granularity in a graph. In this view graph decomposition

using k-truss is similar to k-core explained in the previous section, in fact k-truss is

a (k − 1)-core but not the other way around. By definition k-trusses are much more

rigorous in nature as it is based on triangles which are fundamental structures in a

graph [31] [32] [33] [12].

k-truss decomposition of a graph G is the partitioning of the graph G where every

edge in a partition is contained in (k − 2) triangles formed with other edges in the

partition. k-truss is a connected subgraph of a graph in which every edge is contained

in at least (k − 2) triangles. The problem of truss decomposition in G is to find the

(non-empty) k-trusses of G for all k [34]. Truss value of an edge e is defined as the

largest value of k such that e is contained in the largest possible subgraph S of G

and e is contained in (k − 2) triangles with other edges in S. Figure 1.2 shows the

truss decomposition of a toy graph. Edges 〈ab, ac, ad, bd, bc, cd〉 forms a 4-truss, edges

〈af, df, ai, bi, be, ce〉 forms a 3-truss as all edges in this subgraph form triangles with

www.manaraa.com

5

a b

d c

m

g

j

i h

f e

2-truss
3-truss
4-truss

Figure 1.2.: A toy graph and its k-truss decomposition

edges whose truss value is at least 3. All k-truss subgraphs are also part of (k−1)-truss

subgraphs and this leads to the hierarchical structure of k-truss decomposition.

1.3 GraphX on Apache Spark: Implementation Framework

Apache Spark is an open source bigdata processing engine which unifies batch,

streaming, interactive, and iterative processing of large and diverse data. Spark uses

transformations on in memory resilient data structures called RDD’s. With it’s ex-

tensions like SparkSQL, SparkML and GRaphX, Spark can perform a multitude of

complex tasks, like executing complex SQL queries, training machine learning models,

and processing large complex graph mining methodologies. Pregel-like iterative algo-

rithms are very slow on MapReduce based distributed engines due to a high number

of disk I/O and slow access speed. On the other hand, Spark is more optimized for

iterative processing and is reported to be 100 times faster on such tasks than tradi-

tional MapReduce. Unfortunately, no k-core decomposition or k-truss decomposition

implementation on Spark is available yet.

www.manaraa.com

6

1.4 Contribution of this Thesis

In this thesis, I have proposed scalable k-core and k-truss based graph decomposi-

tion methodologies, which are built on GraphX and Apache Spark platform. Both of

these decompositions enable labeling a vertex or an edge with a core value or a truss

value, facilitating many downstream graph analysis tasks. Spark based implementa-

tion makes the proposed methods very scalable, and efficient.

I propose a distributed k-core algorithm and its implementation, titled Spark-

kCore, which runs on top of Apache Spark’s GraphX framework. Spark-kCore follows

“think like a vertex” paradigm, which is an iterative execution framework provided by

Pregel API of GraphX. I compare Spark-kCore with two other k-core decomposition

algorithms: EMCore [35] and Graphlab’s k-core implementation [36]. Experimental

results on 15 large real-life graphs show that Spark-kCore is substantially superior

to the competing algorithms. I also present experimental results which demonstrate

the runtime behavior of Spark-kCore over various input graph parameters, such as

the number of edges, and the size of maximum k-core. I have made the source of

Spark-kCore available on Github for the community to use 1.

I also propose a distributed k-truss algorithm and its implementation, titled Spark-

kTruss on Apache Spark and GraphX. Spark-kTruss is an graph parallel edge-local

computation of k-core decomposition of k-truss. It follows an “think like and edge”

paradigm in computing truss values of an edge. I compare the performance of our

proposed method in terms of running time and iteration count with a iterative map-

reduce k-truss decomposition algorithm [37] implemented on Apache Spark. I also

compare scalability of my algorithm using synthetic graphs of varying scale and con-

trolled truss values. I report the convergence behavior of our algorithm for different

real-life graphs.

1https://github.com/AriMand/Spark-kCore

www.manaraa.com

7

2. RELATED WORKS

In this chapter we will discuss the research done in the field of graph decomposition

and graph partitioning. The chapter contains a broad overview of the research interest

in the field of graph decomposition with special focus on research related to k-core

and k-truss decomposition.

2.1 Reseach Reated to Graph Decomposition

Graph decomposition or partitioning of a graph into subsets of vertices and

edges has attracted researchers from multiple domains like Computer Science, Bio-

Informatics, Sociology, and many more. The problem of graph decomposition can be

seen as the problem of calculating graph measures to create partitions.

The partitioning of graph can also be viewed as a graph bisection problem. The

initial approaches on graph partitioning was based on graph cuts. Graph cut is the

process of partitioning the vertexes of a graph into disjoint subsets. A cut is defined

by a set of edges that have endpoints in each of the vertex subsets formed by the cut,

the cut is said to be made along these edges [38]. Kernighan et al. [39] were one of the

earliest to suggest a heuristic based greedy approach on partitioning a graph which

will minimize the cost of the edges in a cut. Their work compares different heuristics

to perform a cut in large networks. The other main approach in traditional bisection

based graph partitioning is using Laplacian and eigenvectors [40] [41]. Liu et al. [42]

proposed another heuristic based approach which ensures maximum node separation

among partitions. Another algorithm suggested by Spielman et al. [43] performs

graph partitioning in near linear time. Ford and Fulkerson presented a pioneering

work in the field of graph cuts [44]. In their research they suggested the Max-flow-

Min Cut algorithm for graph cuts. The algorithm uses the flow of information in a

www.manaraa.com

8

network to make cuts which minimizes the flow of information along cuts.

Most of the recent works in graph decomposition is done in the perspective of com-

munity identification [45] [46] [46]. Newman in his research [47] compared methods

to identify dense structures in graph and used it for solving a community detection

problem. He also stated why the traditional graph cut based algorithms are not

suitable for modern era graphs.

Graph partitioning has also been studied by Sociologists, their studies revolve

around the study of a specific social behavior from interaction and relationship graphs.

The majority of these studies involve some form of hierarchal clustering [48]. The

hierarchical clustering approach uses either the single link method or the complete link

method. The single link method identifies communities hierarchically as new edges

are added with decreasing similarity causing components to merge and form larger

components. The single link can construct the dendogram using tree-based union

and find algorithm of Fischer [49] [50]. The complete link method also starts with an

empty graph and build the partition hierarchically but rather than using single links,

communities are identified by maximal cliques [51]. Some complete linkage algorithms

rather than using maximal clique use k-component communities. A pair of vertices

in a k-component community have k independent paths between them [52] [53].

The recent algorithms for community detection like the one suggested by Girvan

and Newman [54] features decisive way of identifying communities based on natural

division among the vertices. Their method in contrast to agglomerative approach of

hierarchical clustering, works on repeated removal of edges based on edge betweenness

property. Tyler et al [55] in their study modified the algorithms suggested by Girvan

and Newman to speed up cluster identification. Radicchi et al. [56] on the other hand

proposed a different measure other than the betweenness measure to partition graphs

into communities. Newman in a later research introduced a modularity function

over all possible divisions of a network which can identify partitions in a graph more

efficiently than existing methods of that time [57]. In another recent work Andersen

et al. have used pagerank of vertices to achieve local partitioning of graphs [58].

www.manaraa.com

9

With growth in the size of graphs more and more researchers have shown interest

in parallel and distributed graph partitioning and decomposition. Gilbert et al. [59]

produced one of the earliest works on parallel graph processing using message passing

algorithm on multiprocessor. Gonzalez et al. [60] proposed a new framework called

PowerGraph for distributed graph parallel calculation of graph measures which can

be used for a partitioning task. Stanton et al. [61] in their research proposed a stream

based algorithm for graph partitioning of large graphs. Karypis et al. [62] created a

library, ParMETIS for parallel graph partitioning and sparse matrix ordering.

In the following section we will discuss in detail work related to graph decompo-

sition and partitioning techniques using k-core, distributed triangle enumeration and

counting, and k-truss.

2.2 Research related to k-core decomposition

Vladimir Batagelj et al. [63] presented a sequential k-core decomposition method

which runs in linear time with respect to the number of edges. Their technique

traverses through a list of vertices sorted by the node degrees and updates the position

of each vertex based on degree of its neighbors as it traverses. The authors used a

form of insertion sort to make the sorting and update process to run in linear time.

However, their method can operate only when the whole graph can be stored in the

main memory of a computer. Another noticeable work on k-core decomposition by

using a single computer was done by Khaouid et al. [64]. A salient feature of their

work is that although their proposed method runs on a single machine, it follows the

vertex centric approach which is, more often, seen in distributed frameworks such as,

Pregel. Along with the k-core algorithm, they also proposed a single memory graph

processing engine, called Graphchi. Besides Graphchi, Khaouid et al.’s method also

runs on Graphlabs platform. The algorithm proposed by Batagelj and Zaversnik is

highly efficient but they are not suitable for parallel processing. Dasari et al. [65]

proposed ParK, a parallel k-core decomposition algorithm, which runs on multi-core

www.manaraa.com

10

processors. Authors show that ParK is significantly faster than the existing sequential

algorithms as long as the entire graph can be loaded into the main memory.

Graphs in real life can get very dense and huge in size so there has been a con-

siderable research on identifying algorithms which can compute k-core decomposition

of a graph in distributed manner. Alberto Montresor et al. provided the pioneer-

ing algorithm in this direction. In their work [66], they provided a good overview

of solving k-core decomposition in a distributed paradigm. They also proved the

correctness of an iterative message passing algorithm to calculate the k-core decom-

position. Their research also draws a conclusion on the upper bound on the number

of iterations needed to get an accurate k-core value of each node. Later Montresor et

al. also gave a comparison between distributed k-core algorithm on de-facto standard

Hadoop Map-Reduce with fine tuned implementation of Map-Reduce like Pregel [67],

Graphlab [68], Stratosphere, and Apache Giraph. To this date, no k-core decompo-

sition method is available for the Spark computation platform, which is one of the

focuses of my thesis.

For large graphs that do not fit in main memory, an alternative approach for k-core

decomposition is to use an algorithm that runs seamlessly over limited memory by

using external memory (EM) as needed. The EMCore algorithms developed by James

Cheng et al. [35] in one such method. Since it has been proposed, this algorithm and

its implementation has been a very popular k-core decomposition algorithm for very

large graphs.

With the increase in large graphs whose structures vary over time, interest in

developing algorithms which incrementally updates the k-core value grew. The work

done by Ahmet Erdem et al. [69] is one of the earliest which provides an efficient

algorithm to calculate and maintain k-core values for nodes in a graph where new

nodes and edges were added over time. In a later work [70], Ahmet provided another

algorithm which maintains k-core values for nodes in graphs with both addition and

deletion of nodes and edges over time.

www.manaraa.com

11

In next two section we will briefly discuss on related works on distributed triangle

enumeration and then follow it by the works on k-truss decomposition.

2.3 Research related to distributed triangle enumeration and counting

The definition of k-truss is based on edge local triangle count so before discussing

on k-truss decomposition work we start with research done on distributed triangle

enumeration and counting. Hasan et.al [71] provided an extensive study of the dif-

ferent approaches used for triangle enumeration and counting on graphs of different

scale.

Triangles are one of the most commonly studied network structures, finding ap-

plication in a variety of use-cases starting with clustering [72], spam detection [73],

community detection etc. Triangles have also been used as meta information for other

decomposition tasks like k-truss and k-cliques. Triangle counts have also been applied

to database query plan optimization [74].

With growing size of network datasets which can not be held in memory, research

interest grew in solving the triangle counting and enumeration problem with a graph

represented as stream of edges. Yossef et.al [74] were one of the first to propose an

algorithm on streaming graph data with a method called stream-reduction, although

their idea was theoretically innovative but was not applicable to real-world network

datasets. Another interesting work was done by Buriol et al. [75] they proposed a

three pass algorithm which uses the Chernoffs inequality to calculate probabilistic

bound on the triangle count approximation task. Later they also proposed a one pass

algorithm which performs the actions of each of the three passes in one go. Jha et

al. [76] came up with another one-pass streaming triangle counting algorithm which is

a variant of triple sampling algorithm adapted for streams. Lim et. al [77], proposed

a way of local triangle enumeration for each node of a network—this idea can be

easily extended to edge-local triangle enumeration. They proposed a system called

MASCOT, a memory-efficient and accurate method for local triangle estimation in a

www.manaraa.com

12

graph stream based on edge sampling.

Stream algorithms are good for map-reduce kind of environment but streaming

algorithms generally provide approximation. For exact counts a distributed algorithm

is more suitable. Suri and Vassilvitskii et. al. [78] proposed a map-reduce based

algorithm. The algorithm proposed by them is based on node iterator algorithm. The

algorithm makes a two round execution, first round generates all length-two paths in

the graph from the edge list, in parallel. In the second pass the algorithm counts how

many of the length two paths are closed by the edges in edge list. Later Suri and

Vassilvitskii [78] proposed a partition based map-reduce algorithm. The algorithm

partitions the graph first and then runs an exact triangle counting method on each

partition, in parallel. Later Park and Chung [79] improved on Suri et al.s method and

proposed a partitioning logic called Triangle Type Partitioning. Another innovative

approach was proposed by Arifuzzaman et. al [80] using distributed memory based

message passing to count triangles. The algorithm partitions the graph into disjoint

subsets of nodes, and generates induced subgraph in each partition with nodes in the

partition and their neighborhood. Triangles are calculated for each of these subgraphs

in an distributed manner. Finally, the counts from all the machines are collected to

get the final count.

Avron [81] in his research suggested a matrix-based approximation algorithm for

triangle counting using Monte-Carlo simulation and the trace of the cube of the

adjacency matrix. Later Ariful Azad et al. [82] improved the algorithm to a simple

exact triangle counting parallel algorithm that is based on matrix algebra on sparse

adjacency matrices.

Considerable research interest is also shown on disk based algorithms on multi

core CPU for large graphs. Kim et al. [83] in his research proposed a disk-based

algorithm for triangle counting on a multi-core CPU using openMP. The Algorithm

uses the notion of internal triangles to represent adjacency list of two connected nodes

already in memory, and external triangles to represent adjacency list of two connected

nodes out of which only one is in memory. In a different approach Rahman and Al

www.manaraa.com

13

Hasan [84] proposed a multi-core parallel variant of the node/edge iterator algorithm

for triangle counting, where the loop of node/edge iterator algorithm are distributed

across multiple cores. A shared memory multi core algorithm was proposed by Shun

and Tangwongsan [85]. The algorithm has two phases, first a parallel ranked adja-

cency list creation based on degree and in the second phase a local triangle counting

is done, finally counts are summed to get the total triangle count.

2.4 Research related to k-truss decomposition

k-truss is a measure of structural cohesiveness of a network [34] which has got

attention of researchers in recent years. Cohen [34] was one of the first to suggest in

his research that, k - truss is a effective network reachability measure which is compu-

tationally more relaxed as compared to cliques. He also provided an algorithm which

requires random access to the whole network resident in memory. Cohen [86] later

proposed a parallel distributed algorithm for k-truss decomposition based on map-

reduce framework which solves the problem of keeping the entire graph in memory.

Wang and Cheng in there research [10] suggested a method for k-truss decomposition

which uses an I/O efficient algorithm. The algorithm is lower bounded by the worst-

case complexity of in-memory triangle listing algorithm [87]—by optimizing I/O it

tries to address the problem of limited memory in a single machine for large graphs.

Huang et al. [88] proposed a query based method to identify k-truss communities

in large real-life dynamic graphs which have a frequent addition and removal of nodes,

vertices or both. Huang et al. [89] also proposed a way of computing a k-truss on

probabilistic graphs. Both these techniques identify the k-trusses given a value of k.

These techniques do not attempt to perform a k-truss decomposition and identify the

maximal k-truss value in a graph.

With advancement in high performance computing and advanced high throughput

architectures new techniques have been proposed for parallel and faster computation

of k-truss decomposition. Kabir and Madduri in their work have proposed an al-

www.manaraa.com

14

gorithm which uses parallelization on a multi-core system to solve all HPEC 2017

Static Graph Challenge datasets under a minute [90]. Smith et al [91]. have further

extended the work, they use the hierarchical nature of k-truss decomposition. Their

algorithm breaks the efficient serial algorithm into a bulk synchronous parallel steps

which does not rely on atomic updates and synchronization.

Pei-Ling Chen et al. [37] extended the work done by Cohen [86] to propose dis-

tributed k-truss decomposition algorithm on the map-reduce framework. The algo-

rithm eliminates the repeated triangle enumeration from Cohen’s [86] work. They

also further provided a proof suggesting the locality of k-trusses, leading to a graph

parallel computation of k-truss decomposition.

www.manaraa.com

15

3. BACKGROUND

In this chapter we will provide mathematical definitions of k-core and k-truss decom-

position problem and related terminologies, which we will be using in the following

chapters.

Let G(V,E) is a graph, where V is the set of vertices and E is the set of edges.

G is undirected, simple graph with no self-loop. For a vertex u ∈ V , we use N (u) to

represent the set of vertices which are adjacent to u. Also, we use deg(u) to represent

the size of N (u), i.e., deg(u) = |N (u)|. k-core and k-truss of a graph and its related

terminologies are defined below. We will use the example graph G shown in figure 3.1

to elaborate on the definitions given below.

a b

d c

f e

g
j

Figure 3.1.: A example graph G

3.1 Definitions related to k-Core

Definition 3.1.1 (k-core) Given G, an undirected, simple graph with no self-loop,

k-core of G, denoted by Ck(G), is a maximal connected subgraph H ⊆ G such that

∀u ∈ H deg(u) ≥ k if it exists. In the above example graph 〈a, b, c, d〉 forms a 3-core

as each vertex in the subgraph has 3 neighbors with core have greater than equal to 3

www.manaraa.com

16

Definition 3.1.2 (Core number) The core number of a vertex, core(v), is the

largest value for k such that v ∈ Ck(G). By definition the core number of 〈a, b, c, d〉
in the sample graph G are all equal to 3, i.e core(a) = 3

Definition 3.1.3 (maximum core) The maximum core number of a graph G, Cmax(G),

is defined as max∀v∈G {core(v)}. By definition the maximum core value of any vertex

in the given graph G is 3, therefore Cmax(G) = 3

Definition 3.1.4 (k-degenaracy) In graph theory, an undirected graph G is called

k-degenerate, if for every induced subgraph H ⊆ G ∃v ∈ H such that deg(v) ≤ k.

Lemma 3.1.1 If a graph has a (non-empty) k-core, the degeneracy value of that

graph is at least k.

3.2 Definition related to k-Truss

Definition 3.2.1 (Triangle) Triangles incident on an edge e = (u, v) denoted by

Triangles(u, v) is defined as a set of vertices S such that ∀z ∈ S|∃(u, z), (v, z) ∈
E. In the above sample graph the edge (a, b) forms triangle (a, b, c) and (a, b, d) so

Triangles(a, b) = {c, d}

Definition 3.2.2 (Edge Support) The support of an edge e = (u, v) ∈ E sup(e,G)

is given by |N (u)∩N (v)| This can also be defined as number of triangles incident on

an edge i.e |Triangles(u, v)|. For example sup(e = (a, b), G) = |Triangles(a, b)| = 2

where G is the sample graph given above.

Definition 3.2.3 (Edge neighbor) The neighbors of an edge e = (u, v) are defined

as nb(e) = {ei = (x, y) : {x, y} ∩ {u, v} = 1, ei ∈ E} i.e edge ei shares a vertex

with edge e. By definition we can see that in the example graph given in figure 3.1

that edge neighbor of (a, b) are 〈(a, d), (a, c), (a, f), (b, c), (b, d), (b, e)〉 as all these edges

share either the vertex a or the vertex b with (a, b).

www.manaraa.com

17

Definition 3.2.4 (Edge Triangle Relationship) The edge triangle relationship is

defined as R(e), set of all edge neighbors of an edge e such that e forms a triangle

with two members of R(e). For an edge e R(e) = {r(e) ∈ nb(e) : r(e), ri(e) ∈
nb(e) and e forms a triangle. In figure 3.1 the edge triangle relationship of (a, b) are

〈(a, d), (a, c), (b, c), (b, d)〉 as all these edges share either the triangle (a, b, c) or the

triangle (a, b, d) with edge (a, b).

Definition 3.2.5 (Line Graph) This is a transformation of graph G into a graph

LG(VLG, ELG) such that a vertex vLG ∈ VLG represents an edge e ∈ E, an edge

eLG = (uLG, vLG) ∈ ELG is created if and only if uLG and vLG share a edge triangle

relationship with each other in G

Definition 3.2.6 (k-truss) A k-truss, K(G, k) is defined as a connected subgraph

SK(VK , EK) of G such that ∀e = (u, v) ∈ EK |sup(e, RK) ≥ k − 2. In figure 3.1 a

4-truss is defined by {(a, b), (a, d), (a, c), (b, c), (b, d), (c, d)}. The subgraph formed by

these edges is the maximal subset of edges such that each edge forms 2 triangles with

other edges in the subset.

Definition 3.2.7 (maximum k-truss) The maximum k-truss of a graph G, Kmax(G),

is defined as max∀SK(VK ,EK)⊂GK(G) . The maximum size of a truss in the graph

shown in figure 3.1 is 4, therefore Kmax(G) = 4

www.manaraa.com

18

4. K-CORE

We propose a distributed k-core algorithm and its implementation, Spark-kCore.

Spark-kCore runs on top of Apache Sparks GraphX framework. The implementation

follows the “think like a vertex” paradigm, which is an iterative execution framework

provided by Pregel API of GraphX. We compare Spark-kCore with two other k-

core decomposition algorithms: EMCore [35] and Graphlabs k-core implementation

[36]. Experimental results on 15 large real-life graphs show that Spark-kCore is

substantially superior to the competing algorithms. We also present experimental

results which demonstrate the runtime behavior of Spark-kCore over various input

graph parameters, such as the number of edges, and the size of maximum k-core. We

also made the source of Spark-kCore available on Github for the community to use.

4.1 Methods of computing k-Core

In this section we will discuss the “think like a vertex” algorithm for calculating

the core value of each node. The algorithm uses the definition of core value given in

the background section to update the nodes in each super step until a state of global

equilibrium is reached across all nodes in the graph. We then explain the details of

implementing this algorithm for both directed and undirected graph using GraphX

on Apache Spark.

4.1.1 Distributed k-core algorithm

The primary assumption of a distributed k-core decomposition algorithm is that

the input graph may or may not fit in the main memory of a single processing unit.

Another assumption is that the listing of nodes and edges of the graph are stored

www.manaraa.com

19

in distributed manner across different machines in a cluster. Mostly, all the existing

distributed k-core methods follow a vertex centric protocol which was initially pre-

sented by Montresor et al. [66]. The distributed algorithm is based on the property

of locality of the k-core decomposition method. The property of locality states that

for ∀u ∈ V , core(v) = k if and only if

1. ∃Vk ⊆ N (u) such that |Vk| = k and ∀ui ∈ Vk, core(ui) ≥ k;

2. @Vk+1 ⊆ N (u) such that|Vk+1| = k + 1 and ∀ui ∈ Vk+1, core(ui) ≥ k + 1.

Thus, the core value of a vertex u, core(u), is the largest value k, such that the vertex

u has exactly k neighbors whose core value is greater than or equal to k. The property

of locality enables the calculation of core value of a node based on the core value of

its neighbors.

An obvious upper bound of the core value of each node is its own degree value.

So, in a vertex-centric k-core decomposition algorithm, each node initializes its core

value with the degree of itself. Each node (say u) then sends messages to its neighbors

v ∈ N (u) with the current estimate of its (u’s) core value. For an undirected graph

with m edges, there can be at most a total of 2m messages that have been sent

during a message passing session. Upon receiving all the messages from its neighbors,

the vertex u computes the largest value l such that the number of neighbors of u

whose current core value estimate is l or larger, is equal or higher than l, i. e.,

l = arg max1≤i≤core(u)

{(∑
v∈N (u) Icore(v)≥i

)
≥ i
}

.

The above l value can be easily computed by gathering the current estimate of

neighbors’ core values from the messages and use those to build a frequency array.

In this array, the element indexed by i is the number of u’s neighbors for which the

current core estimate is exactly i. Then the frequency array is traversed from the

largest index; the first index for which the cumulative sum of the array from the end

up to (including) that index is greater than or equal to the index value is set as the

updated core value of u. Once an updated estimate of the core is obtained, u sends

out a message to all its neighbors with its updated core value. This receive-merge-

www.manaraa.com

20

update-broadcast iteration occurs until there are no more messages to process in any

node in the graph.

a, 2

b, 4 c, 2

e, 5

f, 3 g, 2

d, 4

2
4

5

3

(a) Messages addressed to d by its

neighbors

a, 2

b, 4 c, 2

e, 5

f, 3 g, 2

d, 3

(b) Graph with k-core value of d up-

dated after one iteration

(a, 2) (b, 4) (e, 5) (f, 3) Initial messages received by node d

0 1 2 3

2 4 5 3
The messages are collected and merged into an

array

We traverse through messages array to construct

counts array where the value at an index is equal the

number of neighbours who have reported k-core value

equal to the index
Traverse the counts in reverse to identify the largest index

whose cumulative sum is ≥ the index

0 1 2 3 4 5

0 0 1 1 1 1

0 1 2 3 4 5

0 0 1 1 1 1

0 1 2 3 4 5

0 0 1 1 1 1

0 1 2 3 4 5

0 0 1 1 1 1

Ind=5
𝑖=I𝑛𝑑

𝐸𝑛𝑑
𝑎[𝑖] = 1 Ind=4

𝑖=I𝑛𝑑

𝐸𝑛𝑑
𝑎[𝑖] = 2 Ind=3

𝑖=I𝑛𝑑

𝐸𝑛𝑑
𝑎[𝑖] = 3

(c) Processing at node d

Figure 4.1.: The k-core update flow for one iteration for the vertex d

In Figure 4.1, we show one iteration of update operation on core value estimate

of the vertex d for the graph. In this graph, the number associated with the node

label is the current estimate of the core value of that node. As we can see, the initial

estimate of core value for d is 4 which is d’s degree value. In 4.1(a), we show the

messages carrying the current core value of the neighbors being received by d along

the edges of the graph. Now, in 4.1(c), the messages from d’s neighbors are arranged

www.manaraa.com

21

in a frequency array and the largest index for which the cumulated sum from the end

up to (including) that index is higher than the index value is 3. So 3 is the updated

core value estimate of vertex d, which is correctly reflected in 4.1(b)

4.1.2 Distributed k-core Implementation on Apache Spark

In this section we go into details of the implementation of the distributed k-core

algorithm on Apache Spark as was explained in section 4.1.1. We use the GraphX

engine of Spark to load and process graphs. We start by explaining a few details

about the GraphX engine which are relevant to our implementation.

GraphX is a graph processing engine which allows a graph like manipulation on

top of the native Spark RDDs. All Graphs in GraphX are directed. By default, edge

direction is from a node with lower nodeId to a node with higher nodeId. The edges

are stored in an Spark RDD. For an edge, GraphX also supports triplet view. In this

view, an edge is represented as a triplet, which joins two nodes with an edge along with

all properties of the nodes and the edges stored into an RDD[EdgeTriplet[V D,ED]].

GraphX also provides us Pregel API which takes a custom merge, update, propagate

function and iteratively execute them on each node till a user-defined termination

condition is met. More details on the GraphX framework can be found here [92].

From the above explanation, we can see that in GraphX engine every edge is

directed. But the Pregel framework will process only messages inbound to a node,

which will lead to an incorrect k-core algorithm on undirected graphs. This is due

to the fact that for k-core computation logic needs the messages to traverse in both

directions of an edge. We can handle this problem in two different ways which we

discuss below.

For each pair of nodes connected by an edge, we can enforce the creation of an edge

in the opposite direction. This will solve the above limitation of Pregel framework in

GraphX. But with this approach, we will need twice the amount of memory to store

the extra edges. The other approach which we use for the implementation in this

www.manaraa.com

22

paper is using the triplet view of the graph. In the send message function rather than

sending the message to all outbound edges, we utilize the triplet to put the message

in inbound link of both the nodes in the triplet and thus forcing Pregel framework to

pick up the update information of the node irrespective of the direction of the edge.

Algorithm 1, 2, and 3 provides a pseudo-code of the required functions performed

by each node. It follows the property of locality that we have discussed above. This

property of locality enables the calculation of core value of a node from the core

estimate of its neighbors in an iterative fashion, which makes it a think-like-a-vertex

based distributed algorithm.

Algorithm 1 KcoreSpark - Merge

1: procedure MergeMessage(Str msg1, Str msg2)

2: return msg1.Concatenate(msg2, delimiter)

Algorithm 2 KcoreSpark - Update

1: procedure UpdateNode(Node u, Str msg)

2: msgArray ← msg.Split(delimiter)

3: for all m ∈ msgArray do

4: if m ≤ u.kcore then

5: count[m] + +

6: else

7: count[u.kcore] + +

8: for i := k to 2 do

9: curWeight← CurWeight+ count[i]

10: if curWeight ≥ i then

11: u.kcore← i

12: break

13: return u

www.manaraa.com

23

Algorithm 3 KcoreSpark - Propagate

1: procedure SendMsg(EdgeTriplet triplets)

2: srcV ertex← triplet.getSrcAttr()

3: destV ertex← triplet.getDstAttr()

4: I ← new MsgIterator()

5: I.append(triplet.dstId, srcV ertex)

6: I.append(triplet.srcId, destV ertex)

7: return I

The upper bound of k-core of each node is the degree of the node so to begin

with each node is initialized with k-core value equal to its degree. Each vertex u

runs the procedure MergeMessages followed by the UpdateNode procedure, if

the core value of u is changed (reduced), the updated core value estimate is sent to

all of u’s neighbors by the SendMsg subroutine. In the MergeMessage subrou-

tine, u gathers all messages collected from its neighbors into a single message. The

UpdateNode procedure traverses through all the collected messages and keeps a

count of each element in the array whose value is smaller than the current core value

of u in a counts array (Algorithm 2 Line 3 to 7). The counts array is traversed in

reverse and the counts are summed up. The largest index whose cumulative count

is greater than or equal to the index values is set as the updated core value of the

node (Algorithm 2 Line 8 to 11). In the third phase of operation, the SendMsg

procedure sends out a message to the node’s neighbors if the core value of the node

is updated. This receive-merge-update-broadcast iteration occurs until there are no

more messages to process in any node in the graph.

The time complexity of this algorithm is bounded by 1+
∑

u∈V [deg(u)−core(u)] [66],

which is equivalent to the summation of number of updates made by each node. For

the measurement of this time complexity, we consider the fact that Pregel iterations

are synchronous i.e. in a iteration each node receives messages addressed to it, up-

dates core value, and shares updated core value with neighbors.

www.manaraa.com

24

4.2 Experiments

We perform experiments using Spark-kTruss on real-life datasets to determine

its performance. For comparison purposes we also run test on EMCore, an external

memory k-core decomposition algorithm, and Graphlab, a parallel k-core decompo-

sition library. We use running time as a measure of performance, lower running time

indicates better performance.

4.2.1 Experiment Setup

Cluster Configuration

Spark-kCore is implemented in Scala and the experiments are conducted on a

cluster of 8 machines, each having Intel i7, 2.2Ghz CPU, and 16 GB RAM, running

CentOS (Linux). The hard disk is Seagate Constellation ST2000NM0033-9ZM 2TB

7200 RPM.

Datasets

We test Spark-kCore on publicly available SNAP datasets (snap.stanford.edu)

and Network Repository datasets (networkrepository.com). We perform our analy-

sis on the following fourteen graph datasets: as-kitter, soc-youtube, Amazon product

co-purchasing network (amazon0601), Texas road network (roadNet-TX), California

road network (roadNet-CA), Wikipedia Talk network (wiki-Talk), LiveJournal social

network (LiveJournal), Soc-orkut, tech-p2p, MANN-a81, c4000-5, c2000-9, soc-Pokec,

soc-orkut.

4.2.2 Experimental Results

Competing Methods for performance Comparison: For graphs which can fit

in main memory we compare Spark-kCore’s running time with that of Turi Graphlabs

www.manaraa.com

25

Table 4.1.: Table of results showing the No. of vertices, Edges, Maximum k-core,

running time and the number of Pregel iterations in Spark-kCore.

Dataset Vertices Edges Cmax(G) Tmins Iters

as-skitter 1.7M 11.1M 111 1.3 26

soc-youtube 1M 3M 51 0.9 46

wiki-talk 2.4M 4.7M 131 1.7 50

amazon0601 0.4M 2.4M 10 1.1 10

roadNet-CA 2.0M 2.8M 3 0.75 10

roadNet-TX 1.4M 1.9M 3 0.6 10

MANN-a81 3.3K 5.5M 3280 0.5 3

c4000-5 4K 4M 1909 0.9 14

c2000-9 2K 1.8M 1758 0.4 8

soc-pokec 1.6M 22M 47 3.8 38

tech-p2p 5.7M 147.8M 856 55 70

soc-orkut 3M 117M 231 34 63

soc-ljournal-2008 5.3M 50M 427 3.9 5

soc-LiveJournal1 4.8M 42.8M 372 6.1 20

implementation of k-core decomposition which is based on [36]. Note that, our imple-

mentation is on distributed platform, but Graphlab implementation runs on a single

machine, nevertheless this is an interesting comparison for graphs which are small

enough to fit into main memory. In fact, for small files, distributed algorithms have

an overhead of distributing and synchronizing, which a single system engine does not

have. So, comparison on small graphs is actually unfair for Spark-kCore, yet we make

this comparison to show the superiority of Spark-kCore over Graphlab implementa-

tion. We also compare our results with the EMcore algorithm presented by J. Cheng

www.manaraa.com

26

et al. [35]. We use the Emcore implementation given in [64]. We cannot compare

with MapReduce implementation of k-core decomposition discussed in [93], because

neither a publicly available implementation of this algorithm is available, nor could

the authors provide their implementation.

Spark-kCore’s Runtime Behavior on Various Graph Metrics

Figure 4.2.: Comparison of running time with number of edges fro Spark-kCore

The runtime of Spark-kCore increases almost linearly with the number of edges.

This is expected as the number of messages in the initial iterations of the execution

of Spark-kCore is almost equal to the number of edges. This is due to the fact

that during the initial iterations, for the majority of the vertices, their core value

estimations have not yet been settled to their exact value. However, as iteration

progresses, the number of messages drops as many nodes have their exact core values

and they do not transmit any message. In Figure 4.2, we show the execution time of

Spark-kCore in a bar chart, where each bar corresponds to one of the graphs. The

left Y-axis represents running time in minutes and the right Y-axis represents edge

counts. The bars are sorted from left to right based on their running time. The line

graph shows the edge count for each of the graphs represented by the bar. As we can

see the execution time shows a trend of increasing almost linearly with the number

of edges.

www.manaraa.com

27

Convergence of Spark-kCore

As part of the experiment, we also record the changes in the value of the max k-

core (Cmax(G)) with each iteration till the value converges. Initially, the max k-core

value is equal to the maximum degree of the graph. Based on our experiment we

see that the value of max k-core drops very steeply in the first few small number of

iterations to a value close to the actual max k-core value of the graph. After first few

iterations, the rate of change in max k core value is slow till it converges. Figure 4.3

shows that change in max k-core value with each iteration for 2 graphs: amazon0601,

as-skitter. The X-axis represents the number of iterations and the Y-axis represents

the max k-core value of a graph for a given iteration. These results show that although

it may take a large number of iterations to converge to the max k-core value, we can

get a very close estimate of the max k-core value of the graph in a fraction of these

iterations.

(a) amazon0601 (b) as-skitter

Figure 4.3.: Change in k-core value

Runtime comparison between Spark-kCore and Turi Graphlab

As mentioned above for this comparison we use graphs that fit in the main memory.

Among the graphs that we use in this paper, 7 graphs qualified. The comparison

www.manaraa.com

28

results are shown in Table 4.2. The results show that Spark-kCore is faster than the

Turi Graphlabs, by a wide margin. We also found out that the difference in running

Table 4.2.: Running time comparison between Turi Graphlabs and Spark-kcore

Dataset Cmax(G) TSpark(mins) TGraphLabs(mins)

as-skitter 111 1.3 41

soc-youtube 51 0.9 9.1

wiki-talk 131 1.7 18.2

amazon0601 10 1.1 0.9

roadNet-CA 3 0.75 3.5

roadNet-TX 3 0.6 3.5

soc-pokec 47 3.8 47.5

time of algorithms increases with increasing number of edges. We demonstrate this

behavior in Figure 4.4(a). In Figure 4.4(a) the bars represents the running time for

Spark-kCore and Graphlab sorted by the number of edges in the graph. The line

graph represents the edge count for the graphs in X-axis. The left Y-axis represents

running time in minutes and the right Y-axis represents edge count. With Spark-

kCore we see a speedup of 4 to 32 times. For example k-core decomposition of

soc-pokec on Spark-kCore took 3.8 mins and on graphlabs it took 47.5 mins resulting

in 13X speedup. Although we have a distribution factor of 8, for large graphs we

have a speedup much higher than 8. For smaller graphs the speedup falls to 4 times

due to distribution overhead. Figure 4.4(b) shows the speed up of Spark-kCore. The

Y-axis of the plot represents the speedup factor and the bars represent the speedup

for the graphs sorted by the speedup factor.

www.manaraa.com

29

(a) running time vs number of edges (b) Speedup achieved

Figure 4.4.: Comparison between Spark-kCore and Graphlab

Runtime Comparison between Spark-kCore and EMCore

As mentioned above we also compare the the running time of spark-kCore with

EMCore implementation given in [64]. We compare the results on graphs which are

medium to large in size. We run the comparison on 6 graph amazon0601, wiki-talk,

roadnet-CA, roadnet-TX, soc-pokec and soc-livejournal1. The comparison results

are shown in Table 4.3. The results show that spark-kcore is faster than EMCore.

In Figure 4.5(a) the bars represents the running time for Spark-kCore and EMCore

sorted by the number of edges in the graph. The line graph represents the edge count

for the graphs in X-axis. The left Y-axis represents running time in minutes and

the right Y-axis represents edge count. The difference in execution time is small for

medium sized graphs but for larger graphs the difference becomes substantial.

Figure 4.5(b) shows the speedup achieved by the Spark-kCore for 7 different

graphs. Although we are running on a distributed system with a distribution fac-

tor of 8 we don’t get a speedup greater than 8 times with the graphs we tested

because of the overhead of distribution, but we see a trend that as the size of graph

grows the speedup factor increases suggesting that with larger files speedup factor

will also increase.

www.manaraa.com

30

Table 4.3.: Running time comparison between EMCore and Spark-kcore

Dataset Cmax(G) TSpark(mins) TEMCore(mins)

amazon0601 10 1.1 1.68

wiki-talk 131 1.7 7.71

roadNet-CA 3 0.75 3.42

roadNet-TX 3 0.6 1.5

soc-pokec 47 3.8 14.38

soc-livejournal1 372 6.1 41.7

(a) Running time Vs number of edges (b) Speedup achieved

Figure 4.5.: Comparison between Spark-kCore and EMCore

www.manaraa.com

31

5. DISTRIBUTED TRIANGLE ENUMERATION AND

COUNTING

In this chapter we will discuss different triangle enumeration and counting algorithms

on distributed frameworks. We also propose an algorithm to enumerate edge local

triangles using in-memory distributed processing framework of Apache Spark. The

proposed algorithm is optimized for partitioned in-memory processing with the re-

quirement of resource sharing. We also compare the performance of this algorithms

with Suri and Vassilvitskii [78] Node iterator based map-reduce implementation. An

efficient triangle enumeration is essential to achieve efficient k-truss decomposition.

5.1 Distributed triangle enumeration algorithm

The baseline map-reduce algorithm was initially proposed by Cohen [86]. The

algorithm is a two phase map-reduce operation. In the first phase the map task reads

in the input file and emits an edge keyed by the lower degree vertex. If two vertices

of an edge has the same degree the tie is broken by employing an ordering among the

vertex-ids. The reduce task of first phase takes as input a key value pair where the

key is a vertex and value is a bin of edges adjacent to the vertex. The reducer emits

for each pair of edges in the bin an open triad with the key as the center vertex of

the triad.

The Second map-reduce phase takes as input both the original edge list file and

the output of the first map-reduce phase. The second map task reads both the input

files and combine the records from both the sources and change the edge record’s keys

so they are keyed by the vertices that the edges join. The second and final reduce

task takes input key, value pair such that the key is a vertex pair and bin of edges

and/or open triads. If a bin contains both open triads and edges from original graph

www.manaraa.com

32

then that bin produces triangle. A bin will contain maximum one edge from original

graph and any number of open triads. If bin contain an edge and k open triad then

it will result in k triangles.

Algorithm 4 TriangleEnumMR

Map1: Input:〈(u; deg(u), v; deg(v))φ〉
1: if deg(u) < deg(v) then

2: emit 〈u; (u, v)〉

Reduce1: Input: 〈v;S ⊂ E〉
3: for (u,w) : u,w ∈ S ∧ u,w 6= v do

4: emit : 〈(u,w);S〉

Map2:

5: if Input of type 〈(u, v);S ⊂ E ∪ {(a, b) : a, b ∈ V }〉 then

6: emit 〈(u, v);S〉

7: if Input of type 〈(u; deg(u), v; deg(v));φ〉 then

8: if deg(u) < deg(v) then

9: emit 〈(u, v); (u, v)〉
10: else

11: emit 〈(v, u); (u, v)〉

Reduce2: Input:〈(u, v);S ⊂ E ∪ {(a, b) : a, b ∈ V }〉
12: if (u, v) ∈ S then

13: for (x,w) ∈ S : x = u ∨ x = v do

14: emit : 〈(u, v) ∪ (x,w)〉

5.1.1 Distributed node iterator based algorithm

The baseline algorithm explained above requires a degree information appended

to it which is not easily available for large graphs. In this section we will explain a

www.manaraa.com

33

different map-reduce approach proposed by Suri et al. [78]. This algorithm is based

on node iterator algorithm and will be referred to as NodeIteratorMR going forward.

This algorithm is one of the most commonly used map-reduce based Triangle counting

algorithm in use for large real world graphs. We also use this algorithm for comparison

with our proposed algorithm.

Similar to map-reduce Algorithm suggested above, NodeIteratorMR is a two phase

algorithm.

1. first phase reads in edge list and emits all unique length two paths.

2. second phase reads in both the input edge file as well as the output of the first

phase checks how many of the open triads in phase one are closed by an edge,

and emits the closed triads as triangles.

Algorithm 5 shows the pseudo code for the NodeIteratorMR Algorithm. The Mapper

for phase 1 reads in an edge list file with key as line number and value as a pair of

nodes that form an edge. To avoid duplicate counting of edges ordering is imposed

on edges if the source vertex is smaller than the destination vertex of an edge the

mapper emits a key value pair with key equal to the source vertex-id and value equal

to destination vertex-id. The reducer in first phase takes as input key value pair where

the key is a vertex-id and value is the adjacency list of the vertex. The reducer emits

a key value pair representing a triad where the key is the center vertex of the triad

and the value is pair of vertex from the adjacency list of the center vertex representing

an edge which may close the triad into a triangle.

In second phase mapper takes as input the output file generated in firts phase as

well as the original input file. This mapper emits two different kind of records based

on the input. If the record is from the edge file it emits a key value pair where key is

the edge and value is chosen to be a special character. For records from the output

file of first phase the mapper emits a key value pair where the key is the edge (u, v)

that closes the triad and value is the center vertex of the triad. The reducer takes

as input a key value pair where the key is an edge and the value is a list of vertices

www.manaraa.com

34

Algorithm 5 NodeIteratorMR

Map1: Input:〈(u, v)φ〉
1: if u < v then

2: emit 〈u; v〉

Reduce1: Input: 〈v;S ⊂ η(v)〉
3: for (u,w) : u,w ∈ S do

4: emit : 〈v; (u,w)〉

Map2:

5: if Input of type 〈v; (u,w)〉 then

6: emit 〈(u,w); v〉

7: if Input of type 〈(u, v);φ〉 then

8: emit 〈(u, v);α〉

Reduce2: Input:〈(u, v);S ⊂ V ∪ {α}〉
9: if α ∈ S then

10: for w ∈ S ∩ V do

11: emit : 〈u, v, w〉

and a special character that indicates the edge was present in the original graph. The

reducer checks the presence of special character in the list of values. If the special

character is present it indicates the closure of an open triad. In this case the open

triad given by the key forms a triangle with all other values in the list.

5.1.2 Proposed distributed algorithm on GraphX

The MapReduce algorithm suggested above both suffer from the problem of multi-

ple disk I/O as they needs to make multiple pass over the same data. In Spark we can

minimize the disk I/O using resilient storage in memory but we still cant avoid the

multiple pass over the edge list. We propose an algorithm which takes advantage of

www.manaraa.com

35

the graph abstraction provided by GraphX on Apache Spark to reduce the amount of

disk I/O as well as the multiple passes over the data. The proposed algorithm makes

edge-local calculation of triangles and finally combine the results to get the count.

The Algorithm relies of partitioning the graph into multiple edge centric overlapping

subgraphs, where vertices at the end points of an edge are aware of their neighbors.

a

b

ce

(a) Original Sample Graph G

a, [e, b, c]

b, [a, e, c]

c, [a, b]e, [a, b]

(b) Graph G updated with node neighbor

information

a, [e, b, c]

b, [a, e, c]

c, [a, b]e, [a, b] 2
1

1

1

1

(c) Updated edge local Triangle Count

Figure 5.1.: Spark-Edge-Triangle operation example

Figure 5.1 shows the GraphX based triangle counting locally for each edge. The

first step of the process is to generate a list of records, where each record is a pair

of values containing a vertex-id and the adjacency list of the vertex. Then using

the node update procedure of GraphX each node u is updated with its adjacency

list in the graph G, as shown in figure 5.1(b). Now in the updated graph we use

the triplet view to count triangles incident on each triplet. The triplet view consists

of [edge− attribues, source-vertex-arrtribute, and destination-vertex-arrtribute]. We

www.manaraa.com

36

take the intersection of source vertex neighbors and the destination vertex neighbors of

an triplet to find the number of triangles incident on an edge as shown in Figure 5.1(c).

Algorithm 6 gives a pseudo code for edge-local triangle counting using Apache Spark.

Algorithm 6 EdgeLocalTriangle

1: procedure EnumerateEdgeLocalTriangle(Graph : G)

2: nei← G.CollectNeighbors() . nei : RDD[vertexID,List[Neighbours]]

3: G.MapNodes(nei) . Given G(V,E) ∀u ∈ V u.nb = nei[u]

4: for all e ∈ G.edges do

5: u← e.src

6: v ← e.dest

7: e.triangles← u.nb ∩ v.nb
8: e.tcount← Size(e.triangles)

9: return G

5.2 Experiments

We perform experiments on real-life datasets to test the performance of Spark-

Edge-Triangle, a partitioning based edge-local triangle enumeration and counting

algorithm on Apache Spark. We compare the performance of our proposed method

against traditional defacto hadoop map-reduce method of triangle enumeration and

counting. We use running time as a measure of performance, lower running time

indicates better performance.

5.2.1 Experimental Setup

Cluster Configuration

Spark-Edge-Triangle is implemented in Scala and the experiments are conducted

on a cluster of 8 machines, each having Intel i7, 2.2Ghz CPU, and 16 GB RAM,

www.manaraa.com

37

running CentOS (Linux). The hard disk is Seagate Constellation ST2000NM0033-

9ZM 2TB 7200 RPM.

Datasets

We test Spark-edge-triangle on publicly available SNAP datasets (snap.stanford.

edu) and Network Repository datasets (networkrepository.com). We perform our

analysis on the following five graph datasets: Gowalla-edges, as-kitter, com-youtube,LiveJournal

social network,soc-Pokec.

5.2.2 Experimental Results

We compare our proposed algorithm Spark-Edge-Triangle with the performance

of NodeIteratorMR (node-iterator based map-reduce proposed by Suri et al. [78]).

Table 5.1 shows the results of running Spark-Edge-Triangle and NodeIteratorMR on

5 different graphs. The columns of the table represent the name of the dataset, the

size of the vertex set, size of edge set. Tcount represents total number of triangles

found, TE
max; the maximum number of triangles incident on any given edge, TimeMR

and TimeSET represent the time taken by the map-reduce algorithm and Spark-Edge-

Triangle algorithm to count triangles respectively.

Speedup achieved by Spark-Edge-Triangle over NodeIteratorMR

We compare the performance of our proposed algorithm with NodeItertorMR on

7 different real life datasets. We observe that we get a speedup ranging from 5 times

to around 20 times for different networks. The speedup factor increases with the size

of network in general. One more interesting observation is that the speed up increases

but as the size of graph becomes large enough that they cannot be held in memory

we see a drop in performance. This drop in performance can be addressed by using

faster disks like SSD.

www.manaraa.com

38

Table 5.1.: Table showing running time in minutes of Spark-Edge-Triangle and

NodeIteratorMR

Dataset Vertex Edge Tcount TE
max TimeMR TimeSET

Gowalla-edges 0.2M 0.9M 2273138 1297 3 0.22

com-youtube 1M 3M 3056386 4034 3.67 0.6

as-skitter 1.7M 11.1M 28769868 28654 11.24 0.52

soc-pokec 1.6M 22M 32557458 5566 22.72 1.12

com-lj 5.3M 50M 177820130 1393 40.64 3.21

Figure 5.2 shows the running time comparison of Spark-Edge-Triangle with NodeIt-

eratorMR on different real-life graphs with increasing magnitude of edge. The X-axis

represents the different graphs arranged in increasing order of edges, and Y-axis

represents the time taken. Figure 5.2(b) Shows the speedup achieved by Spark-Edge-

Triangle over NodeIteratorMR.

(a) Running time of Spark-Edge-Triangle and

NodeIteratorMR

(b) Speedup achieved

Figure 5.2.: Comparison spark-edge-triangle with NodeIteratorMR

www.manaraa.com

39

6. K-TRUSS

6.1 Methods of Computing k-Truss

In this section we will describe methods of k-truss decomposition for a graph G

using two different distributed algorithms. The first approach uses the traditional

map-reduce approach with iterative pruning of edge represented as a list of key value

tuple. The second approach is a more robust graph parallel computation model which

takes advantage of the locality of k-trusses. Both these decomposition models use the

count of triangles incident on an edge for initialization. For enumerating triangles on

an edge we use the algorithm described in previous section.

Spark is suitable over traditional map-reduce for iterative algorithms. Both these

algorithms are iterative in nature so we compare the performance of these competing

methods on an framework suitable for iterative algorithm. We also study the con-

vergence of the graph parallel algorithm to see if it follows the same pattern as the

convergence of k-core.

6.1.1 Distributed k-truss algorithm based on map-reduce

Here we explain the iterative map-reduce based approach of calculating the truss

value of each edge. Distributed k-truss decomposition on a map-reduce framework

was proposed in [86] and [37]. The Algorithm works by iteratively filtering the edges

which do not satisfy the minimum trussness criterion and updates the trussness of

remaining edges until no more edges are left.

The Algorithm consists of three main tasks. 1) Get the set of vertices V e
T that

from triangles with a given edge e; 2) Create an edge centric view of the graph where

each record is a key, value pair; key is the edge e and value is the current truss

www.manaraa.com

40

value of e denoted by cTruss(e) along with all the edges that share an edge triangle

relationship with e denoted by R(e); 3) iteratively update and maintain cTruss(e)

according to the information passed on from the last iteration.

We use c to denote the current threshold of minimum truss value. This value

signifies that all edges with truss value less that c have already been discovered in

the graph. The minimum value of c for any graph is 2 as 0 is the minimum number

of triangles that can be incident on an edge. In this implementation we do not

filter the edges, rather we use the threshold to decide which edge participate in a

particular iteration. The edges which do not satisfy the threshold condition pass

through without any processing in all future iterations.

Figure 6.1 shows one iteration of the map-reduce approach for the edge (a, b) in

graph G. In the first step the graph is transformed in to an edge centric key value

view, where the key is the edge itself and the value is a tuple consisting of potential

truss value of the edge and set of edge triangle relationship of e = (a, b). This

transformation of graph to edge centric view with triangle information is performed

only once. As shown in figure 6.1(b) the edge (a, b) has three triangles (a, b, c), (a, b, d),

(a, b, e) incident on it, therefore the edge centric view of the edge (a, b) states that

the current truss value is 5 (3+2) and the edge triangle relationship contains edges

[ae, be, ac, bc, ad, bd]. This initial edge centric view is then passed on to another map

and reduce function pair. The map function uses the threshold c, for each record in

the edge centric view it emits a record of the type 〈e, cTruss(e), r1(e), r2(e)...r|R(e)|(e)〉
along with a set of key-value pairs of the form 〈ri(e), 0, e〉 where ri(e) is an edge which

shares edge triangle relationship with e i.e ri(e) ⊂ R(e). This step means e informs

ri(e) that it still exists in the graph in the current iteration. Figure 6.1(c) shows the

map phase operation on the edge ab with threshold value c = 3.

The output of the map phase is passed to a reduce operation where a collection

of values of the form 〈cTruss(e), e〉 is received corresponding to an edge, the reduce

task also takes as input the threshold c. The records gathered by the reduce function

are of two types. As cTruss(e) can never be equal to 0 for a edge record we use

www.manaraa.com

41

ab

cd

e

(a) Original Sample Graph G (b) Edge centric view

(c) Map Task on the edge ‘ab’ (d) Reduce Task on the edge ‘ab’

Figure 6.1.: One iteration of Spark-kTruss-MR on the edge (a, b)

www.manaraa.com

42

this value to separate the two different types of records, if the first value in the tuple

is 0 then this record shows the presence of an edge in this iteration generated from

the map phase and not an original edge, in this case the second value in the tuple is

appended to the list VE otherwise the value is appended to the list VT ; VT = R(e).

If cTruss(e) < c we don’t need to do anything as this edge is already in its optimal

state. For cTruss(e) ≥ c we can validate the existence of the edges in R(e) using

the operation VT ∩VE where VE contains set of all edges which have not been filtered

in the previous iteration. Truss value of e is updated as |VT∩VE |
2

+ 2, if the updated

cTruss(e) doesn’t satisfy the trussness threshold c, final truss value is set to c − 1.

Figure 6.1(d) shows the reduce operation on edge (a, b).

Algorithm 7 Spark-kTruss - MapReduce

1: procedure KTrussMR(Graph : G)

2: G′ ← EnumerateEdgeLocalTriangle(G)

3: emap←MapEdges(G′)

4: stop← False

5: c← 2

6: while ¬stop do

7: repeat

8: emap← UpdateTrussnessMR(emap, c)

9: until ∃e ∈ G.edges|e.oldTrussness 6= e.trussness

10: if ∃e ∈ G.edges|e.trussness > c then

11: c← c+ 1

12: else

13: stop← True

14: return emap

Algorithm 7 gives a pseudo-code for the map-reduce approach explained above.

In line 1 and 2 we enumerate the triangles incident on each edge using the Enu-

merateEdgeLocalTriangle routine and then map edges to form an RDD of the

www.manaraa.com

43

form RDD[〈e, trussness(e), R(e)〉]. Line 6 through 13 shows the iterative process of

updating the truss value of each edge using the UpdateTrussnessMR subroutine.

After each update process the status variable is checked to see if any of the edges

have been update. If non of the edges get updated the threshold value is incremented

by one as shown in line 10 - 11.

Algorithm 8 Spark-kTruss - MapReduce - UpdateTrusness

Input: The set of I2 : (e, trussness,R(e) ∈ edgeneighbour(e)) ∈ E and threshold c

Output: Same as the input format with updated trussness

1: procedure UpdateTrussMap((edge, trusness,R(edge), c)

2: emit (K=edge,val=trusness,R(edge))

3: for ei ∈ R(edge) do

4: emit (K=ei,val=u, [edge])

5: procedure UpdateTrussReduce(em : edge, V : Iterable[(trussness,N)], c)

6: L← EmptyList() and L0 ← EmptyList()

7: for val ∈ V do

8: if val.trusness == 0 then

9: L0.append(val.N)

10: else

11: L.append(val.N) . N := {r1(em)...rm(em) ∈ R(em)}
12: s← val.trussness

13: if s < c then

14: Output (em, s, L)

15: else

16: T ← {t : t ∈ L ∩ L0}
17: if |T |/2 + 2 < c then

18: Output (em, c− 1, L)

19: else

20: Output (em, |T |/2 + 2, L)

www.manaraa.com

44

Algorithm 8 provides the pseudo code for the map and reduce procedures which

perform the update operation on each edge record at every iteration as shown in Al-

gorithm 7. The UpdateTrussMap function makes a pass through the edge records

and emits them, if the record satisfies the truss threshold; along with the edge record,

the edge triangle relationships of the edge are also emitted, line 2 - 5 shows these

operations. The UpdateTrussReduce function starts by separating the two kinds

of records collected from the map phase using the truss value of a record as shown

in line 6 through 12. In line 16 through 18 the algorithm checks how many of the

edge triangle relationship of an edge remains in the current iteration and update truss

value accordingly.

In Apache Spark we achieve the map operation of algorithm 8 using the flatMap

routine and reduce operation is achieved by the combination of GroupByKey and

Map routine. These functions are all applied on an of typeRDD[〈e, trussness(e), R(e)〉],
the functions transform the RDD iteratively until termination condition is meet. We

also append a state variable with each edge record in an RDD to check if the record

has been modified in a given iteration, this information is used to terminate the code

i.e when no record in an RDD has been updated the process is terminated. On ter-

mination each record contains the exact truss value of the edge represented by the

record.

6.1.2 Distributed graph parallel k-truss algorithm

The primary assumption of a distributed k-truss decomposition algorithm is that

the input graph may or may not fit in the main memory of a single processing unit

and the list of nodes and edges of the graph are stored in distributed manner across

different machines in a cluster. The graph parallel computation is based on an edge

centric abstraction suggested by [37]. We use an algorithm which uses the locality

property of k-trusses for decomposition. The locality property of k-truss suggests

that ∀e ∈ E, truss(e) = k if and only if

www.manaraa.com

45

1. ∃Ek ⊆ nei(e) such that |Ek| = 2(k−2), edges in Ek forms total (k−2) triangles

with e, and ∀e′ ∈ Ek, truss(e
′) ≥ k;

2. @Ek+1 ⊆ nei(e) such that |Ek+1| = 2(k − 1), edges in Ek+1 forms total (k − 1)

triangles with e, and ∀e′ ∈ Ek+1, truss(e
′) ≥ k + 1;

Thus, the truss value of an edge e, truss(e), is the largest value k such that the edge

e has exactly 2(k− 2) neighboring edges whose truss value is greater than or equal to

k. The property of locality enables the calculation of truss value of an edge based on

the truss value of its edge-neighbors. This property of locality reduces the amount of

large expensive communication between edge partitions which are located in different

machines in a cluster.

Most common graph parallel paradigms like Pregel are all vertex centric and k-

truss is an edge centric computation. GraphX in Apache Spark also supports only

vertex centric graph parallel abstraction there is no provision for edge centric graph

parallel computation. So to achieve the graph parallel computation of k-truss we

convert the graph to a line graph based on the definition given earlier. As defined

earlier all edges in a graph is converted to vertexes in a line graph and two vertexes in

a line graph are connected with each other if and only if they share an edge triangle

relationship with each other.

The graph parallel computation runs on line graph(nodes and edges of the line

graph will be marked with a subscript LG) and on convergence a vertex of the line-

graph contains the truss value of an edge in the original graph. We use the triangle

enumeration algorithm given above to construct the line graph. In a vertex-centric

k-truss decomposition algorithm on the line graph, each node initializes its truss value

to (t + 2) where t is the count of triangles incident on the edge (represented by the

vertex in LG) in the original graph. Each node (say uLG) then sends messages to its

neighbors vLG ∈ N(uLG) with the current estimate of its (uLG’s) truss value. For an

undirected line graph with m edges, there can be at most a total of 2m messages that

have been sent during a message passing session. Upon receiving all the messages

www.manaraa.com

46

from its neighbors, vertex u computes the largest value p such that u has atleast p

neighbors whose current truss estimate is p or more.

a

b c

d

e

(a) Original Sample Graph G

ae, 3

be, 3

ad, 3 bd, 3

ab, 5

bc, 3 ac, 3

(b) The line graph LG of G

ae, 3

be, 3

ad, 3 bd, 3

bc, 3 ac, 3

ab, 5
3

3

3 3

3 3

(c) Messages direcetd to node ‘ab’

ae, 3

be, 3

ad, 3 bd, 3

bc, 3 ac, 3

ab, 3

(d) Node ‘ab’ updated after one iter-

ation

Table for ‘ab’

c 3

d 3

e 3

Truss Counter for ‘ab’

Truss Size 1 2 3 4 5

Frequency 3 3 3 0 0

(e) Processing at node ‘ab’

Figure 6.2.: One iteration of Spark-kTruss on the edge (a, b)

In Figure 6.2 we show one iteration of the truss update process for a node ab in the

line graph LG representing an edge between a and b in original graph G. Figure 6.2(a)

shows the original graph and Figure 6.2(b) shows the transformed line graph with

www.manaraa.com

47

each node being an edge in the original graph initialized with the initial truss value

of the edges which is two more than the number of triangles incident on the edge.

Each node shares their current trussness value with its neighbors. Figure 6.2(c) shows

neighbors sharing messages with node ab. On receiving a messages from neighbors,

node ab constructs a mapping table, the table lists all uncommon vertices (from

original graph) in the messages and all their corresponding minimum trussness as

shown in Figure 6.2(d). We use the table to construct a frequency array and the

largest index for which the cumulative sum from the end up to (including) that index

is higher than the index value is the new truss value for the node (edge in original

graph), the value is 3 in Figure 6.2(d).

Algorithm 9 KtrussSpark - Merge

1: procedure MergeMessageKT(Str msg1, Str msg2)

2: return msg1.Concatenate(msg2, delimiter)

Algorithm 9, 10, and 11 provide a pseudo-code of the required functions performed

by each node in the line graph LG. It follows the property of locality that we have

discussed above. This property of locality enables the calculation of truss value of a

node in the line graph from the truss estimate of its neighbor nodes in the line graph

in an iterative fashion, which makes it a think-like-an-edge distributed algorithm.

The upper bound of truss value of each node is the triangle incident on the edge

in the original graph G so to begin with each node in line graph LG is initialized with

k-truss value equal to two more than the count of triangles incident on the edge in

graph G. Each vertex uv in LG runs the procedure MergeMessagesKT followed

by the UpadateNodeKT procedure, if the truss value of uv is changed (reduced),

the updated truss value estimate is sent to all of uv’s neighbors by the SendMsgKT

subroutine. In the MergeMessageKT subroutine, uv gathers all messages collected

from its neighbors into a single message. The UpdateNodeKT procedure traverses

through all the collected messages and creates a table where the key is given by

(w, v)\ (u, v) for message received from wv, and the value is the minimum truss value

www.manaraa.com

48

Algorithm 10 KtrussSpark - Update

1: procedure UpdateNodeKT(Node u, Str msg)

2: msgArray ← msg.Split(delimiter)

3: T ← EmptyTable()

4: for all m ∈ msgArray do

5: (co, un)← getCommonUncommon(m.edge.src,m.edge.dst)

6: if un /∈ T ∨ T (un) > m.trusness then

7: T (un)← m.trusness

8: for (un, ctrussness) ∈ T do

9: j ←Min(u.trusness, ctrussness)

10: count[j] + +

11: for i := u.trussness to 3 do

12: curWeight← curWeight+ count[i]

13: if curWeight ≤ i− 2 then

14: u.trussness← i

15: break

16: return u

Algorithm 11 KtrussSpark - Propagate

1: procedure SendMsgKT(EdgeTriplet triplets)

2: srcV ertex← triplet.getSrcAttr()

3: destV ertex← triplet.getDstAttr()

4: I ← new MsgIterator()

5: I.append(triplet.dstId, srcV ertex)

6: I.append(triplet.srcId, destV ertex)

7: return I

for this key seen so far, as shown in line 4 to 7 in Algorithm 10. Line 8 to 10 in

Algorithm 10 shows the construction of a frequency array which keeps a count of

www.manaraa.com

49

each element in the table whose value is smaller than the current truss value of uv in.

The frequency array is traversed in reverse and counts are summed up. The largest

index whose cumulative frequency is greater than or equal to the index values is set as

the updated truss value of the node (Edge in original graph); shown in line 11 to 16.

In the third phase of operation, the SendMsgKT procedure sends out a message to

a nodes neighbors if truss value of the node is updated. In Apache Spark the graphs

are directed and messages only propagate in one direction so for undirected graphs

rather than creating reverse edges to facilitate bi-directional communication we used

a modified send message function which puts a message in input of both source and

destination node of a directed edge. This receive-merge-update-broadcast iteration

occurs until there are no more messages to process in any node in the graph.

6.2 Experiments

We perform experiments on both real-life datasets and synthetic datasets to test

the performance of Spark-kTruss-MR, an iterative map-reduce based truss computa-

tion on Apache Spark, and Spark-kTruss, a graph parallel truss computation algo-

rithm on Apache Spark. We compare the performance of both the methods in terms

of running time and number of iterations required for convergence.

6.2.1 Experiment Setup

Cluster Configuration

Spark-k-truss is implemented in Scala and the experiments are conducted on a

cluster of 8 machines, each having Intel i7, 2.2Ghz CPU, and 16 GB RAM, running

CentOS (Linux). The hard disk is Seagate Constellation ST2000NM0033-9ZM 2TB

7200 RPM.

www.manaraa.com

50

Datasets

We test Spark-kTruss and Spark-kTrussMR on publicly available SNAP datasets

(snap.stanford.edu). We perform our analysis on the following eight graph datasets:

as-kitter, com-youtube, Amazon product co-purchasing network (amazon0601), Texas

road network (roadNet-TX), California road network (roadNet-CA), Wikipedia Talk

network (wiki-Talk).

To check the scaling of the algorithms we also use artificially generated datasets.

We use Kronecker graph generation model [94]to generate our synthetic datasets.

The Kronecker model is known to satisfy most of the properties shown by real world

graphs. We use an identical Kronecker matrix {0.90.328; 0.350.39} to generate 4

datasets of different scales. Using the same matrix for the different scale graphs

ensure that all of them have the same attribute and they only vary in scale which

helps us perform scalability study of our algorithms.

6.2.2 Experimental Results

Map-Reduce Implementation of k-truss on Apache Spark

In this section we will discuss the performance of the iterative map-reduce based

k-truss decomposition algorithm on Apache Spark. We will test Spark-kTruss-MR

on real life datasets mentioned above as well as on datasets generated by Kronecker‘s

method. Table 6.1 summaries the results of Spark-kTruss-MR on 6 real world graphs

which vary in size and structure. We also report the number of iterations taken by

the algorithm to converge. We observe that the amount of time required for the

decomposition to converge is proportional to the number of iterations and the number

of edges in the graph. The algorithm in each iteration makes a scan over the entire

edge RDD so this behavior is expected.

For synthetically generated graphs this behavior remains consistent. The synthet-

ically generated graphs are controlled to have max k-truss value of 4. We perform this

www.manaraa.com

51

test with synthetic graphs to ascertain the scalability of the algorithm with growing

size of graphs. These graphs take a small number of iteration to converge and the

running time is mostly proportional to the number of edges |E|. Table 6.2 summarizes

the results of Spark-kTruss-MR on 4 synthetic datasets of different scale.

Table 6.1.: Table of results showing the No. of vertices, Edges, Maximum k-truss,

running time and the number of MapReduce iterations on real life graphs.

Dataset Vertices Edges Kmax(G) Iters Tmins

CA-HepTh 9.9K 52K 32 64 3.6

p2p-Gnutella 6.3K 0.42M 5 23 2.28

roadNet-CA 1.4M 1.90M 4 7 0.44

amazon0601 0.4M 2.4M 11 130 35

roadNet-TX 2M 2.8M 4 7 0.67

com-youtube 1M 3M 19 400 110

Table 6.2.: Table of results showing the No. of vertices, Edges, Maximum k-truss,

running time and the number of MapReduce iterations on 4 synthetic graphs.

DataSet Scale Vertices Edges Kmax(G) Iters Tmins

103 1K 1.41K 4 5 1.03

104 16.4K 25.6K 4 4 0.67

105 0.26M 0.46M 4 10 2.1

106 1M 2M 4 12 2.5

www.manaraa.com

52

(a) Real World Graphs (b) Synthetic Graphs

Figure 6.3.: Running time Vs number of edges for Spark-kTruss-MR

Graph Parallel Implementation of k-truss on Apache Spark

Here we provide the results related to the performance of the graph parallel imple-

mentation, Spark-kTruss. We also compare the performance of Spark-kTruss against

the performance of Spark-kTruss-MR mentioned above. Table 6.3 shows execution

summary of Spark-kTruss on 9 different real world large graph datasets, the table

lists the total time taken by the implementation as well as the time taken to con-

struct the line graph and the time taken for the pregel computation. The line graph

computations is a one-time function and can be computed and stored. So for compar-

isons with the map-reduce implementation we will use the time taken by the pregel

iterations. We use StorageLevel.MEMORY AND DISK persistence for nodes and

edges of the linegraph. So with increasing graph size and iteration number spark will

fall back to disk when it cannot hold an RDD completely in memory; this causes disk

I\O resulting in performance drop.

For the real world datasets the running time show no trend with the number of

edges. There are other factors like the density of the graph and the value of KMax(G)

which also affect the running time. The running time is a function of the number of

updates required for each edge.

www.manaraa.com

53

For synthetic graphs shown in table 6.4 where the density and the KMax(G) value

is controlled we see a clear trend of execution time increasing with the number of

edges. We also observe that the ratio of line graph construction time to the pregel

based decomposition time drops substantially with increasing graph size.

Table 6.3.: Table of results showing the No. of vertices, Edges, Maximum k-truss,

running time and the number of Pregel iterations in Spark-kTruss on real life graphs.

Dataset Vertices Edges Kmax(G) Iters Tmins

CA-HepTh 9.90K 52K 32 2 0.3

p2p-Gnutella 63K 0.41M 5 3 0.45

loc-Gowalla 0.19M 0.95M 29 7 4.05

com-Dblp 0.317M 1.05M 114 4 3.05

roadNet-CA 1.4M 1.9M 4 3 0.8

amazon0601 0.4M 2.4M 11 5 16.87

roadNet-TX 2M 2.8M 4 3 0.55

com-youtube 1.1M 3M 19 45 28

(a) Real World networks (b) Synthetic networks

Figure 6.4.: Running time Vs number of edges for Spark-kTruss

www.manaraa.com

54

Table 6.4.: Table of results showing the No. of vertices, Edges, Maximum k-truss,

running time and the number of Pregel iterations in Spark-kTruss on on 4 synthetic

graphs.

DataSet Scale Vertices Edges Kmax(G) Iters Tmins

103 1K 1.41K 4 5 0.48

104 16.4K 25.6K 4 5 0.4

105 0.26M 0.46M 4 8 0.85

106 1M 2M 4 9 2.3

Convergence of Spark-kTruss

As part of the experiment, we also record the changes in the value of the max

k-truss (Kmax(G)) with each iteration till the value converges. Initially, the max k-

truss value is equal to the maximum number of triangles incident on the edge + 2.

Based on our experiment we see that the value of Kmax(G) drops very steeply in the

first few iterations to a value close to the actual max k-truss value of the graph. After

first few iterations, the rate of change in max k-truss value is slow till it converges.

Figure 6.5 shows that change in max k-core value with each iteration for 2 graphs:

amazon0601, as-skitter. The X-axis represents the number of iterations and the Y-

axis represents the max k-truss value of a graph for a given iteration. These results

show that although it may take a large number of iterations to converge to the max

k-truss value, we can get a very close estimate of the max k-truss value of the graph

in a fraction of these iterations.

www.manaraa.com

55

(a) amazon0601 (b) loc-Gowalla

Figure 6.5.: Convergence of max k-truss value.

(a) Speedup achieved on real world networks (b) Speedup achieved on synthetic graphs

Figure 6.6.: Comparison between speedup of Spark-kTruss and Spark-kTruss-MR

Comparison between Spark-kTruss and Spark-kTruss-MR

The speedup achieved by Spark-kTruss over Spark-kTruss-MR generally grows

with the number of edges in the graph but as the size of graph grows and spark flushes

large RDD’s to disk we see a drop in the speedup factor. With our experimental setup

we noticed that graphs with edges in the scale of 106 spark starts flushing RDD’s to

disk.

www.manaraa.com

56

Figure 6.6(a) shows the speed up achieved by Spark-kTruss on different real word

graphs. Most of the real world graphs are large for our experimental setup and suffer

from flush to disk effect. Figure 6.6(b) shows the speedup achieved by synthetic

graphs of different scales and as stated above the speedup achieved increases with the

size of graph but as scale becomes larger than 106 we see a drop in the speedup due

to disk I/O

(a) Real World Graphs (b) Synthetic Graphs

Figure 6.7.: Comparison between Iterations of Spark-kTruss and Spark-kTruss-MR

We also compare the number of iterations taken by Spark-kTruss with Spark-

kTruss-MR. Figure 6.7(a) shows the number of iterations taken by each of the real

world graphs for both Spark-kTruss and Spark-kTruss-MR. We observed that Spark-

kTruss always takes lesser number of iterations as compared to Spark-kTruss-MR. One

interesting obeservation is that for road network graphs like roadNet-CA and roadnet-

TX the difference is very small these graphs by virtue of there structure dont get much

benefit from the graph parallel computations as compared to much denser graphs like

amazon co-purchasing graph. Figure 6.7(b) shows the iteration comparison of the

synthetically generated graphs, we observed that as we grow in scale the difference

in number of iterations of Spark-kTruss and Spark-kTtruss-MR increases, with larger

graphs the graph parallel computation leads to faster propagation of edge information

to edge neighbors leading to faster convergence as compared to the Spark-kTruss-MR.

www.manaraa.com

57

7. SUMMARY

In this work, we propose Spark-kCore, and Spark-kTruss two different decomposition

methods of a graph on Apache Spark framework.

Spark-kCore is a Spark based distributed algorithm for k-core decomposition.

This algorithm assigns characteristics to each vertex in a graph which can be used

to partition the graph. The proposed method is scalable, and it runs on graphs that

do not fit in the main memory of a computer. Our comparison with existing k-core

implementation on other distributed platforms, such as GraphLabs shows that our

method has significant improvement in terms of speedup and scalability. We also

show that the graph parallel method of k-core computation proposed by us converges

to a very close estimate of k-core in a small fraction of iteration, for large graphs this

estimate can be used for most practical tasks.

Spark-kTruss is a Spark based distributed algorithm for k-truss decomposition.

Unlike k-core k-truss is edge characteristic based partitioning of a graph. The pro-

posed implementation is a graph parallel computation of k-truss relying on the locality

property of k-truss. The proposed implementation scales horizontally as shown in the

above section. We also compare our proposed algorithm with an iterative map-reduce

based algorithm on Apache Spark and show that the graph parallel implementation

takes lesser number of iterations to converge and is thus faster that the bottom up

iterative map-reduce algorithm.

Both these suggested methods are good upper bounds to maximal cliques of a

graph. These methods are computationally more efficient than maximal clique com-

putation and can be used as a good partitioning measure for downstream tasks like

community detections. These can also be used as a graph pruning measure to make

the computation for maximal cliques more efficient.

www.manaraa.com

58

8. FUTURE WORK

We have achieved some considerable speedup with the graph parallel algorithms of k-

truss and k-core decomposition. We can further extend this work to perform intensive

experiments of distribution on spark and effect of disk and network I/O.We can see

how network latency, and disk I/O latency affect the performance of graph parallel

algorithms on Apache Spark.

As a future scope we plan on deriving a mathematical upper bound on the number

of iterations a bulk synchronous graph parallel message passing algorithm like Spark-

kCore and Spark-kTruss, will take for all its nodes to converge. As of now we have

a very loose upper bound which is equal to the maximum degree of a vertex in the

graph.

k-core and k-truss are upper bounds to maximum clique in a graph. We can

use k-core and k-truss to prune the vertexes and edges of a graph and then perform

the maximum clique computation. This pre-processing of graph can speedup the

computation of a maximum clique on that graph.

This research can be applied fast distributed community identification task using

k-truss and k-core decomposition on large graphs.

In recent times a substantial interest has been shown in fast construction of hi-

erarchical dense subgraphs. k-core and k-trusses are both hierarchical and are good

measures of density. These algorithms for k-truss and k-core decomposition can be

further extended to perform fast distributed hierarchical dense subgraph identifica-

tion.

In a large database of graphs the proposed distributed algorithms can be used for

identification of frequent subgraphs which uses the edge and vertex properties derived

by k-core and k-truss decomposition respectively, to achieve partitioning.

www.manaraa.com

REFERENCES

www.manaraa.com

59

REFERENCES

[1] U. Alon, “Network motifs: theory and experimental approaches,” Nat Rev Genet,
vol. 8, no. 6, pp. 450–461, Jun. 2007.

[2] M. Rahman, M. A. Bhuiyan, M. Rahman, and M. A. Hasan, “GUISE: a uniform
sampler for constructing frequency histogram of graphlets,” Knowl. Inf. Syst.,
vol. 38, no. 3, pp. 511–536, 2014.

[3] M. E. J. Newman, “Spectral methods for network community detection and
graph partitioning,” arXiv:1307.7729, 2013.

[4] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski, “On the maximum quasi-
clique problem,” Discrete Applied Mathematics, vol. 161, no. 1-2, pp. 244–257,
2013.

[5] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence
through a social network,” in Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 2003, pp.
137–146.

[6] X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking maximization in
social networks under the competitive linear threshold model,” in Proceedings
of the 2012 SIAM International Conference on Data Mining. SIAM, 2012, pp.
463–474.

[7] D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen, “On socio-spatial group
query for location-based social networks,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 949–957.

[8] D.-N. Yang, Y.-L. Chen, W.-C. Lee, and M.-S. Chen, “On social-temporal group
query with acquaintance constraint,” Proceedings of the VLDB Endowment,
vol. 4, no. 6, pp. 397–408, 2011.

[9] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique relaxations in social
network analysis: The maximum k-plex problem,” Operations Research, vol. 59,
no. 1, pp. 133–142, 2011.

[10] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proceedings
of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[11] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,”
Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[12] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected
graph,” Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

www.manaraa.com

60

[13] R. D. Luce, “Connectivity and generalized cliques in sociometric group struc-
ture,” Psychometrika, vol. 15, no. 2, pp. 169–190, 1950.

[14] S. B. Seidman, “Network structure and minimum degree,” Social networks, vol. 5,
no. 3, pp. 269–287, 1983.

[15] R. J. Mokken, “Cliques, clubs and clans,” Quality and quantity, vol. 13, no. 2,
pp. 161–173, 1979.

[16] H. Matsuda, T. Ishihara, and A. Hashimoto, “Classifying molecular sequences
using a linkage graph with their pairwise similarities,” Theoretical Computer
Science, vol. 210, no. 2, pp. 305–325, 1999.

[17] J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-cliques,” in Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 228–238.

[18] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of internet
topology using k-shell decomposition,” Proceedings of the National Academy of
Sciences, vol. 104, no. 27, pp. 11 150–11 154, 2007.

[19] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-core de-
composition of internet graphs: hierarchies, self-similarity and measurement bi-
ases,” arXiv preprint cs/0511007, 2005.

[20] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. Honey, V. Wedeen, and
O. Sporns, “Mapping the structural core of human cerebral cortex,” PLoS Biol-
ogy, vol. 6, p. e159, 2008.

[21] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse, “Identification of influential spreaders in complex networks,” arXiv
preprint arXiv:1001.5285, 2010.

[22] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis, “Graph clustering and min-
imum cut trees,” Internet Mathematics, vol. 1, no. 4, pp. 385–408, 2004.

[23] R. Rossi, D. Gleich, A. Gebremedhin, and M. M. A. Patwari, “Parallel max-
imum clique algorithms with applications to network analysis and storage,”
arXiv:1302.6256v2, 2013.

[24] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “Large scale
networks fingerprinting and visualization using the k-core decomposition,” in
Advances in neural information processing systems, 2006, pp. 41–50.

[25] M. Á. Serrano, M. Boguná, and A. Vespignani, “Extracting the multiscale back-
bone of complex weighted networks,” Proceedings of the national academy of
sciences, vol. 106, no. 16, pp. 6483–6488, 2009.

[26] M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya, “Devel-
opment and implementation of an algorithm for detection of protein complexes
in large interaction networks,” BMC bioinformatics, vol. 7, no. 1, p. 207, 2006.

[27] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast and scalable
system for fraud detection in online auction networks,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 201–210.

www.manaraa.com

61

[28] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,” Physica A:
statistical mechanics and its applications, vol. 390, no. 6, pp. 1150–1170, 2011.

[29] N. Korovaiko and A. Thomo, “Trust prediction from user-item ratings,” Social
Network Analysis and Mining, vol. 3, no. 3, pp. 749–759, 2013.

[30] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms for dense
subgraph discovery,” in Managing and Mining Graph Data. Springer, 2010, pp.
303–336.

[31] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-worldnetworks,”
nature, vol. 393, no. 6684, p. 440, 1998.

[32] S. Wasserman and K. Faust, Social network analysis: Methods and applications.
Cambridge university press, 1994, vol. 8.

[33] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models of
social networks,” Proceedings of the National Academy of Sciences, vol. 99, no.
suppl 1, pp. 2566–2572, 2002.

[34] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” National
Security Agency Technical Report, vol. 16, 2008.

[35] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition in
massive networks,” in Data Engineering (ICDE), 2011 IEEE 27th International
Conference on. IEEE, 2011, pp. 51–62.

[36] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “k-core de-
composition: a tool for the visualization of large scale networks,” CoRR, vol.
abs/cs/0504107, 2005.

[37] P.-L. Chen, C.-K. Chou, and M.-S. Chen, “Distributed algorithms for k-truss
decomposition,” in Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 2014, pp. 471–480.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to
algorithms second edition,” 2001.

[39] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning
graphs,” The Bell system technical journal, vol. 49, no. 2, pp. 291–307, 1970.

[40] A. Pothen, “A. pothen, h. simon, and k.-p. liou, siam j. matrix anal. appl. 11,
430 (1990).” SIAM J. Matrix Anal. Appl., vol. 11, p. 430, 1990.

[41] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical jour-
nal, vol. 23, no. 2, pp. 298–305, 1973.

[42] J. W. Liu, “A graph partitioning algorithm by node separators,” ACM Transac-
tions on Mathematical Software (TOMS), vol. 15, no. 3, pp. 198–219, 1989.

[43] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems,” in Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing. ACM, 2004, pp.
81–90.

www.manaraa.com

62

[44] L. R. Ford Jr and D. R. Fulkerson, Flows in networks. Princeton university
press, 2015.

[45] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in
very large networks,” Physical review E, vol. 70, no. 6, p. 066111, 2004.

[46] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas, “Self-similar
community structure in a network of human interactions,” Physical review E,
vol. 68, no. 6, p. 065103, 2003.

[47] M. E. Newman, “Detecting community structure in networks,” The European
Physical Journal B, vol. 38, no. 2, pp. 321–330, 2004.

[48] J. Scott, “Social network analysis: A handbook. sage london,” 2nd edtion, 2000.

[49] M. J. Fischer, “Efficiency of equivalence algorithms,” in Complexity of Computer
Computations. Springer, 1972, pp. 153–167.

[50] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,” Journal
of the ACM (JACM), vol. 22, no. 2, pp. 215–225, 1975.

[51] ——, “Decomposition by clique separators,” Discrete mathematics, vol. 55, no. 2,
pp. 221–232, 1985.

[52] J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected compo-
nents,” SIAM Journal on Computing, vol. 2, no. 3, pp. 135–158, 1973.

[53] D. R. White and F. Harary, “The cohesiveness of blocks in social networks: Node
connectivity and conditional density,” Sociological Methodology, vol. 31, no. 1,
pp. 305–359, 2001.

[54] M. Girvan and M. E. Newman, “Community structure in social and biological
networks,” Proceedings of the national academy of sciences, vol. 99, no. 12, pp.
7821–7826, 2002.

[55] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, “Email as spectroscopy:
Automated discovery of community structure within organizations,” in Commu-
nities and technologies. Springer, 2003, pp. 81–96.

[56] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and
identifying communities in networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 101, no. 9, pp. 2658–2663, 2004.

[57] M. E. Newman, “Modularity and community structure in networks,” Proceedings
of the national academy of sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[58] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank
vectors,” in Foundations of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on. IEEE, 2006, pp. 475–486.

[59] J. R. Gilbert and E. Zmijewski, “A parallel graph partitioning algorithm for
a message-passing multiprocessor,” International Journal of Parallel Program-
ming, vol. 16, no. 6, pp. 427–449, 1987.

www.manaraa.com

63

[60] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
distributed graph-parallel computation on natural graphs.” in OSDI, vol. 12,
no. 1, 2012, p. 2.

[61] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed
graphs,” in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012, pp. 1222–1230.

[62] G. Karypis, K. Schloegel, and V. Kumar, “Parmetis: Parallel graph partitioning
and sparse matrix ordering library,” Version 1.0, Dept. of Computer Science,
University of Minnesota, p. 22, 1997.

[63] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decomposition of
networks,” arXiv preprint cs/0310049, 2003.

[64] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decomposition
of large networks on a single pc,” Proceedings of the VLDB Endowment, vol. 9,
no. 1, pp. 13–23, 2015.

[65] N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm for k-core
decomposition on multicore processors,” in 2014 IEEE International Conference
on Big Data (Big Data), Oct 2014, pp. 9–16.

[66] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core decompo-
sition,” IEEE Transactions on parallel and distributed systems, vol. 24, no. 2,
pp. 288–300, 2013.

[67] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A system for large-scale graph processing,” in Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 135–146.

[68] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: A framework for machine learning and data mining in
the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online].
Available: https://doi.org/10.14778/2212351.2212354

[69] A. E. Saŕıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek,
“Streaming algorithms for k-core decomposition,” Proceedings of the VLDB En-
dowment, vol. 6, no. 6, pp. 433–444, 2013.

[70] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek, “In-
cremental k-core decomposition: algorithms and evaluation,” The VLDB Jour-
nal, vol. 25, no. 3, pp. 425–447, 2016.

[71] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a review,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8,
no. 2, 2018.

[72] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,” ACM
Computing Surveys (CSUR), vol. 47, no. 1, p. 10, 2014.

www.manaraa.com

64

[73] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-streaming
algorithms for local triangle counting in massive graphs,” in Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2008, pp. 16–24.

[74] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming algo-
rithms, with an application to counting triangles in graphs,” in Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, 2002, pp. 623–632.

[75] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler,
“Counting triangles in data streams,” in Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 2006, pp. 253–262.

[76] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming algorithm
for triangle counting using the birthday paradox,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing. ACM, 2013, pp. 589–597.

[77] Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling for
counting local triangles in graph streams,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15. New York, NY, USA: ACM, 2015, pp. 685–694. [Online].
Available: http://doi.acm.org/10.1145/2783258.2783285

[78] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,”
in Proceedings of the 20th international conference on World wide web. ACM,
2011, pp. 607–614.

[79] H.-M. Park and C.-W. Chung, “An efficient mapreduce algorithm for counting
triangles in a very large graph,” in Proceedings of the 22nd ACM international
conference on Information & Knowledge Management. ACM, 2013, pp. 539–548.

[80] S. Arifuzzaman, M. Khan, and M. Marathe, “Patric: A parallel algorithm for
counting triangles in massive networks,” in Proceedings of the 22nd ACM inter-
national conference on Information & Knowledge Management. ACM, 2013,
pp. 529–538.

[81] H. Avron, “Counting triangles in large graphs using randomized matrix trace
estimation,” in Workshop on Large-scale Data Mining: Theory and Applications,
vol. 10, 2010, pp. 10–9.

[82] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and enumera-
tion using matrix algebra,” in Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International. IEEE, 2015, pp. 804–811.

[83] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu, “Opt: a new framework for
overlapped and parallel triangulation in large-scale graphs,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data. ACM,
2014, pp. 637–648.

[84] M. Rahman and M. Al Hasan, “Approximate triangle counting algorithms on
multi-cores,” in Big Data, 2013 IEEE International Conference on. IEEE,
2013, pp. 127–133.

www.manaraa.com

65

[85] J. Shun and K. Tangwongsan, “Multicore triangle computations without tun-
ing,” in Data Engineering (ICDE), 2015 IEEE 31st International Conference
on. IEEE, 2015, pp. 149–160.

[86] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in Science &
Engineering, vol. 11, no. 4, pp. 29–41, 2009.

[87] S. Chu and J. Cheng, “Triangle listing in massive networks,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 6, no. 4, p. 17, 2012.

[88] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss commu-
nity in large and dynamic graphs,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 2014, pp. 1311–1322.

[89] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of probabilistic
graphs: Semantics and algorithms,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 77–90.

[90] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,” arXiv
preprint arXiv:1707.02000, 2017.

[91] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis, “Truss de-
composition on shared-memory parallel systems,” in High Performance Extreme
Computing Conference (HPEC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[92] Apache.org. (2017) Graphx- spark 2.2.0 documentation.

[93] B. Elser and A. Montresor, “An evaluation study of bigdata frameworks for graph
processing,” in Big Data, 2013 IEEE International Conference on. IEEE, 2013,
pp. 60–67.

[94] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani,
“Kronecker graphs: An approach to modeling networks,” Journal of Machine
Learning Research, vol. 11, no. Feb, pp. 985–1042, 2010.

www.manaraa.com

VITA

www.manaraa.com

66

VITA

Aritra Mandal

EDUCATION

• Masters of Science, May 2018

Purdue University, Indianapolis

Department of Computer and Information Science

• Bachelor of Engineering, May 2013

Birla Institute of Technology, Mesra, India

Department of Computer Science and Engineering

TEACHING EXPERIENCE

• CSCI 53600 - Teaching Assistant - Data Communication & Computer Networks

CORPORARE EXPERIENCE

• PayPal Inc. - May 2017 to Aug 2017 - Machine Learning Engineer (Intern)

• Genpact - Aug 2013 to July 2016 - Machine Learning and Big Data Engineer

www.manaraa.com

PUBLICATIONS

www.manaraa.com

67

2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 976

A Distributed k-Core Decomposition Algorithm on Spark*

Aritra Mandal1 and Mohammad Al Hasan2

Abstract— k-core decomposition of a graph is a popular
graph analysis method that has found widespread applications
in various tasks. Thanks to its linear time complexity, k-core
decomposition method is scalable to large real-life networks as
long as the input graph fits in the main memory. For graphs that
do not fit in the main memory, external memory based approach
or distributed solution based on iterative MapReduce platform
have been proposed. However, both external memory solution
and iterative MapReduce based solution are slow due to their
high disk I/O cost. In this paper we propose, Spark-kCore,
a distributed k-core decomposition algorithm, which runs on
Spark cluster computing platform. Using think-like-a-vertex
paradigm, the proposed method utilizes a message passing
paradigm for solving k-core decomposition, thus reducing
the I/O cost substantially. Experiments on 15 large real-life
networks show that our method is much faster than the existing
k-core decomposition solutions.

I. INTRODUCTION

Structural analysis and mining of large and complex
graphs is a well studied research direction having wide-
spread applications in graph clustering, classification, and
modeling. There are various methods for structural analysis
of graphs including, the discovery of frequent subgraphs or
network motifs [1], [2], counting triangles or graphlets [3],
or finding highly connected subgraphs, such as cliques and
quasi-cliques [4]. The above tasks help to identify small
subgraphs which are building blocks of large real-life graphs.
Besides, they are used for solving tasks such as community
discovery, building features for graph indexing or classifi-
cation, and graph partitioning. Unfortunately, the algorithms
for solving the majority of the above tasks are very costly,
which makes them not-scalable to large real-life networks.
So, scalable tools for structural analysis of massive networks
are of high demand to meet the need of today’s graphs that
have millions of vertices and edges.

In recent years, k-core decomposition of graphs has
emerged as an effective and low-cost alternative for structural
analysis of large networks. Till date k-core decomposition
has been used for studying Internet topologies [5].k-coere
also finds usage in study hierarchical, and self-similarity
in Internet graph [6]. Lately k-core decomposition is being
used for structural composition of brain networks [7], for
identifying influential spreaders in complex networks [8],
for building data structures for graph clustering [9], and

1Aritra Mandal is with Department of Computer Science, Indiana Uni-
versity Purdue University Indianapolis, 723 W. Michigan Street amandal
at iupui.edu

2Mohammad Al Hasan is with Department of Computer Science, In-
diana University Purdue University Indianapolis, 723 W. Michigan Street
alhasan at iupui.edu

a b

d c

f e

m

g

j

k

l
i h

1-core
2-core
3-core

Fig. 1: A toy graph and its k-core decomposition

for computing lower bound to prune search space while
searching for maximum cliques [10]. The salient feature that
enables k-core decomposition as a leading structural analysis
tool is its linear runtime which makes it scalable to large
real-life networks with millions of vertices and edges.
k-core decomposition of a graph G is partitioning the

vertices of G based on its “coreness”; in this partitioning,
vertices belonging to the core of a given k value form the
k-cores of G. A k-core of G is an induced subgraph of G
such that all nodes of that subgraph have a degree at least
equal to k. Informally, k-cores can be obtained by removing
all vertices of degree less than or equal to k, until the degree
of all remaining vertices is larger than or equal to k. By
definition, k-core partitions are concentric, i.e., if a node
belongs to k-core for a given k = K, it also belongs to
the k-core for all k values from 1 to K; thus the coreness
of a vertex is determined by the largest k value for which
the vertex participates in a k-core. Vertices belonging to the
largest core value occupy the central position of the network
and thus they play a larger role in the composition of a
network. See Figure 1 for a graph in its k-core decomposed
form. The largest core in this graph is a 3-core consisting of
the vertices a, b, c and d.

Initial research on k-core were in graph theory, k-core
was studied in relation to the study of the degeneracy of
a network. Linear time algorithm to obtain the degeneracy
of a network has been developed decades ago [11], using
such an algorithm k-cores of a graph can be obtained.
However, in recent years, there has been a renewed interest
in developing efficient and practical algorithms explicitly
for k-core decomposition by researchers in the domain of
complex networks, data mining, and life sciences. In this
direction, Batagelj et al. [12] authored an influential work;
they proposed a O(m) algorithm for core decomposition of

www.manaraa.com

68

977

a network, where m is the number of edges in the network.
This is a sequential algorithm running on a single-memory
machine. The algorithm works well as long as the entire
input graph fits in the main memory of a network, which
unfortunately is not the case for today‘s gigantic networks,
such as Internet graph, and social networks. In some cases,
the network may fit in the main memory of a machine, but
the network can be inherently distributed over a collection
of hosts, making it difficult to move the entire graph in a
single-memory machine. So, in recent years, there are several
works for obtaining effective distributed algorithms for k-
core decomposition on various platforms, like Pregel [13],
GraphLab [14], and GraphChi [15]. Algorithms that run
on external memory, such as, EMCore, has also been pro-
posed [16].

Apache Spark is an open source bigdata processing engine
which unifies batch, streaming, interactive, and iterative
processing of large and diverse data. Spark uses trans-
formations on in-memory resilient data structures called
RDD’s. With it’s extensions, like SparkSQL, SparkML and
GRaphX, Spark can perform a multitude of complex tasks,
like executing complex SQL queries, training machine learn-
ing models, and processing large complex graph mining
methodologies. Specifically, for graph processing, Pregel-
like iterative algorithms are very slow on MapReduce based
distributed engines due to a high number of disk I/O and slow
access speed. On the other hand, Spark is more optimized
for iterative processing and is reported to be 100 times
faster on such tasks than traditional MapReduce. Due to
the benefits of spark and its capability to scale horizontally,
the community has demanded for an implementation of k-
core decomposition on Spark through Spark feature request 1.
Unfortunately, no k-core decomposition implementation on
Spark is available yet.

In this paper, We propose a distributed k-core algorithm
and its implementation, Spark-kCore. Spark-kCore runs on
top of Apache Spark’s GraphX framework. The implemen-
tation follows the “think like a vertex” paradigm, which is
an iterative execution framework provided by Pregel API of
GraphX. We compare Spark-kCore with two other k-core de-
composition algorithms: EMCore [16] and Graphlab’s k-core
implementation [14]. Experimental results on 15 large real-
life graphs show that Spark-kCore is substantially superior
to the competing algorithms. We also present experimental
results which demonstrate the runtime behavior of Spark-
kCore over various input graph parameters, such as the
number of edges, and the size of maximum k-core. We also
made the source of Spark-kCore available on Github for the
community to use 2.

1https://issues.apache.org/jira/browse/
SPARK-16976

2https://spark-packages.org/package/
DMGroup-IUPUI/Spark-kCore

II. BACKGROUND

A. k-Core

Let G(V,E) is a graph, where V is the set of vertices and
E is the set of edges. G is undirected, simple graph with no
self-loop. For a vertex u ∈ V , we use N (u) to represent the
set of vertices which are adjacent to u. Also, we use deg(u)
to represent the size of N (u), i.e., deg(u) = |N (u)|. Given
G, an undirected, simple graph with no self-loop, k-core
of G, denoted by Ck(G), is a maximal connected subgraph
H ⊆ G such that ∀u ∈ H deg(u) ≥ k if it exists. The core
number of a vertex, core(v), is the largest value for k such
that v ∈ Ck(G). The maximum core number of a graph
G, Cmax(G), is defined as max∀v∈G {core(v)}. In graph
theory, an undirected graph G is called k-degenerate, if for
every induced subgraph H ⊆ G ∃v ∈ H such that deg(v) ≤
k. If a graph has a (non-empty) k-core, the degeneracy value
of that graph is at least k.

B. Pregel Paradigm

Pregel [13] paradigm of large scale graph processing was
introduced by Goolge. This paradigm has a ”think like a
vertex” approach for a graph analysis task. Pregel has two
different stages of operation. It has an initialization stage
which is executed once at the beginning of the execution.
The initialization function sets the value of each vertex to a
default value. The next stage is an iteration stage; in each
iteration, all the nodes execute three operations. Each node
collects and merges all the messages it has received from
its neighbors; it updates its value based on the messages it
has received and sends a message out to all its neighbors.
The Pregel paradigm fits very well for a distributed k-core
decomposition algorithm, which we will discuss next.

III. METHODS

A. Distributed k-core algorithm

The primary assumption of a distributed k-core decom-
position algorithm is that the input graph may or may not
fit in the main memory of a single processing unit. Another
assumption is that the listing of nodes and edges of the graph
are stored in distributed manner across different machines in
a cluster. Mostly, all the existing distributed k-core methods
follow a vertex centric protocol which was initially presented
by Montresor et al. [17]. The distributed algorithm is based
on the property of locality of the k-core decomposition
method. The property of locality states that for ∀u ∈ V ,
core(v) = k if and only if

1) there exist a subset Vk ⊆ N (u) such that |Vk| = k and
∀ui ∈ Vk, core(ui) ≥ k;

2) there exist no subset Vk+1 ⊆ N (u) such that|Vk+1| =
k + 1 and ∀ui ∈ Vk+1, core(ui) ≥ k + 1.

Thus, the core value of a vertex u, core(u), is the largest
value k such that the vertex u has exactly k neighbors whose
core value is greater than or equal to k. The property of
locality enables the calculation of core value of a node based
on the core value of its neighbors.

www.manaraa.com

69

978

a, 2

b, 4 c, 2

e, 5

f, 3 g, 2

d, 4

2
4

5

3

(a) Messages addressed to d by its
neighbors

�D���� �E���� �H���� �I���� ,QLWLDO�PHVVDJHV�UHFHLYHG�E\�QRGH�G

� � � �

� � � �
7KH PHVVDJHV DUH FROOHFWHG DQG PHUJHG LQWR DQ

DUUD\

:H WUDYHUVH WKURXJK PHVVDJHV DUUD\ WR FRQVWUXFW

FRXQWV DUUD\ ZKHUH WKH YDOXH DW DQ LQGH[LV HTXDO WKH

QXPEHU RI QHLJKERXUV ZKR KDYH UHSRUWHG N�FRUH YDOXH

HTXDO WR WKH LQGH[
7UDYHUVH�WKH�FRXQWV�LQ�UHYHUVH��WR�LGHQWLI\�WKH�ODUJHVW�LQGH[�

ZKRVH�FXPXODWLYH�VXP�LV���WKH�LQGH[

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

,QG ��Ì
Ü@Má×

¾á×
=>E? L s ,QG ��Ì

Ü@Má×

¾á×
=>E? L t ,QG ��Ì

Ü@Má×

¾á×
=>E? L u

(b) Processing at node d

a, 2

b, 4 c, 2

e, 5

f, 3 g, 2

d, 3

(c) Graph with k-core value of d
updated after one iteration

Fig. 2: The k-core update flow for one iteration for the vertex d

An obvious upper bound of the core value of each node is
its own degree value. So, in a vertex-centric k-core decompo-
sition algorithm, each node initializes its core value with the
degree of itself. Each node (say u) then sends messages to
its neighbors v ∈ N (u) with the current estimate of its (u’s)
core value. For an undirected graph with m edges, there can
be at most a total of 2m messages that have been sent during
a message passing session. Upon receiving all the messages
from its neighbors, the vertex u computes the largest value l
such that the number of neighbors of u whose current core
value estimate is l or larger is equal or higher than l, i. e.,
l = argmax1≤i≤core(u)

{(∑
v∈N (u) Icore(v)≥i

)
≥ i

}
.

The above l value can be computed easily by gathering the
current estimate of neighbors’ core values from the messages
and use those to build a frequency array. In this array,
the element indexed by i is the number of u’s neighbors
for which the current core estimate is exactly i. Then the
frequency array is traversed from the largest index; the first
index for which the cumulative sum of the array from the
end up to (including) that index is greater than or equal to
the index value is set as the updated core value of u. Once
an updated estimate of the core is obtained, u sends out a
message to all its neighbors with its updated core value. This
receive-merge-update-broadcast iteration occurs until there
are no more messages to process in any node in the graph.

In Figure 2, we show one iteration of update operation
on core value estimate of the vertex d for the graph. In
this graph, the number associated with the node label is the
current estimate of the core value of that node. As we can
see, the initial estimate of core value for d is 4 which is
d’s degree value. In 2(a), we show the messages carrying
the current core value of the neighbors being received by
d along the edges of the graph. Now, in 2(b), the messages
from d’s neighbors are arranged in a frequency array and the
largest index for which the cumulated sum from the end up
to (including) that index is higher than the index value is 3.
So, 3 is the updated core value estimate of vertex d, which
is correctly reflected in Figure 2(c).

B. Distributed k-core Implementation on Apache Spark

In this section we go into details of the implementation
of the distributed k-core algorithm on Apache Spark as was

explained in section III-A. We use the GraphX engine of
Spark to load and process graphs. We start by explaining a
few details about the GraphX engine which is relevant to our
implementation.

GraphX is a graph processing engine which allows a graph
like manipulation on top of the native Spark RDDs. All
Graphs in GraphX are directed. By default, edge direction
is from a node with lower nodeId to a node with higher
nodeId. The edges are stored in an Spark RDD. For an
edge, GraphX also supports triplet view. In this view, an
edge is represented as a triplet, which joins two nodes with
an edge along with all properties of the nodes and the edges
stored into an RDD[EdgeTriplet[V D,ED]]. GraphX also
provides us Pregel API which takes a custom merge, update,
propagate function and iteratively execute them on each node
till a user-defined termination condition is met. More details
on the GraphX framework can be found here [18].

From the above explanation, we can see that in GraphX
engine every edge is directed. But the Pregel framework will
process only messages inbound to a node, which will lead to
an incorrect k-core algorithm on undirected graphs. This is
due to the fact that for k-core computation logic needs the
messages to traverse in both directions of an edge. We can
handle this problem in two different ways which we discuss
below.

For each pair of nodes connected by an edge, we can
enforce the creation of an edge in the opposite direction.
This will solve the above limitation of Pregel framework
in GraphX. But with this approach, we will need twice
the amount of memory to store the extra edges. The other
approach which we use for the implementation in this paper
is using the triplet view of the graph. In the send message
function rather than sending the message to all outbound
edges, we utilize the triplet to put the message in inbound
link of both the nodes in the triplet and thus forcing Pregel
framework to pick up the update information of the node
irrespective of the direction of the edge.

Algorithm 1, 2, and 3 provides a pseudo-code of the
required functions performed by each node. It follows the
property of locality that we have discussed above. This
property of locality enables the calculation of core value
of a node from the core estimate of its neighbors in an

www.manaraa.com

70

979

iterative fashion, which makes it a think-like-a-vertex based
distributed algorithm.

Algorithm 1 KcoreSpark - Merge

1: procedure MERGEMESSAGE(Str msg1, Str msg2)
2: return msg1.Concatenate(msg2, delimiter)

Algorithm 2 KcoreSpark - Update

1: procedure UPDATENODE(Node u, Str msg)
2: msgArray ← msg.Split(delimiter)
3: for all m ∈ msgArray do
4: if m ≤ u.kcore then
5: count[m] + +
6: else
7: count[u.kcore] + +

8: for i := k to 2 do
9: curWeight ← CurWeight+ count[i]

10: if curWeight ≥ i then
11: u.kcore ← i
12: break
13: return u

Algorithm 3 KcoreSpark - Propagate

1: procedure SENDMSG(EdgeTriplet triplets)
2: srcV ertex ← triplet.getSrcAttr()
3: destV ertex ← triplet.getDstAttr()
4: I ← new MsgIterator()
5: I.append(triplet.dstId, srcV ertex)
6: I.append(triplet.srcId, destV ertex)
7: return I

The upper bound of k-core of each node is the degree of
the node so to begin with each node is initialized with k-core
value equal to its degree. Each vertex u runs the procedure
MERGEMESSAGES followed by the UPDATENODE proce-
dure, if the core value of u is changed (reduced), the updated
core value estimate is sent to all of u’s neighbors by the
SENDMSG subroutine. In the MERGEMESSAGE subroutine,
u gathers all messages collected from its neighbors into
a single message. The UPDATENODE procedure traverses
through all the collected messages and keeps a count of
each element in the array whose value is smaller than the
current core value of u in a counts array (Algorithm 2 Line
3 to 7). The count array is traversed in reverse and counts
are summed up. The largest index whose cumulative count
is greater than or equal to the index values is set as the
updated core value of the node (Algorithm 2 Line 8 to 11).
In the third phase of operation, the SENDMSG procedure
sends out a message to a nodes neighbors if its core value
of the node is updated. This receive-merge-update-broadcast
iteration occurs until there are no more messages to process
in any node in the graph.

The time complexity of this algorithm is bounded by 1 +∑
u∈V [deg(u) − core(u)] [17], which is equivalent to the

summation of the number of updates that each node makes
to reach to its actual core value. For the measurement of this
time complexity, we consider the fact that Pregel iterations
are synchronous i.e during each iteration each node receives
all messages addressed to it, calculates its new core value,
and sends its updated core value to all its neighbors.

IV. EXPERIMENTAL RESULTS

Setup: Spark-kCore is implemented in Scala and the ex-
periments are conducted on a cluster of 8 machines, each
having Intel i7, 2.2Ghz CPU, and 16 GB RAM, running
CentOS (Linux). The hard disk is Seagate Constellation
ST2000NM0033-9ZM 2TB 7200 RPM.
Datasets: We test Spark-kCore on publicly available SNAP
datasets (snap.stanford.edu) and Network Reposi-
tory datasets (networkrepository.com). We perform
our analysis on the following fourteen graph datasets: as-
kitter, soc-youtube, Amazon product co-purchasing network
(amazon0601), Texas road network (roadNet-TX), California
road network (roadNet-CA), Wikipedia Talk network (wiki-
Talk), LiveJournal social network (LiveJournal), Soc-orkut,
tech-p2p, MANN-a81, c4000-5, c2000-9, soc-Pokec, soc-
orkut. The number of vertices, edges and the maximum core
number of these graphs are available in Table I.

TABLE I: Table of results showing the No. of vertices,
Edges, Maximum k-core, running time and Pregel iterations
in Spark-kCore.

Dataset Vertices Edges Cmax(G) T(mins) Iters
as-skitter 1.7M 11.1M 111 1.3 26

soc-youtube 1M 3M 51 0.9 46
wiki-talk 2.4M 4.7M 131 1.7 50

amazon0601 0.4M 2.4M 10 1.1 10
roadNet-CA 2.0M 2.8M 3 0.75 10
roadNet-TX 1.4M 1.9M 3 0.6 10
MANN-a81 3.3K 5.5M 3280 0.5 3

c4000-5 4K 4M 1909 0.9 14
c2000-9 2K 1.8M 1758 0.4 8

soc-pokec 1.6M 22M 47 3.8 38
tech-p2p 5.7M 147.8M 856 55 70
soc-orkut 3M 117M 231 34 63

soc-ljournal-2008 5.3M 50M 427 3.9 5
soc-LiveJournal1 4.8M 42.8M 372 6.1 20

Competing Methods for Performance Comparison: For
graphs which can fit in main memory we compare Spark-
kCore’s running time with that of Turi Graphlabs imple-
mentation of k-core decomposition which is based on [14].
Note that, our implementation is on distributed platform,
but Graphlab implementation runs on a single machine,
nevertheless this is an interesting comparison for graphs
which are small enough to fit into main memory. In fact,
for small files, distributed algorithms have an overhead of
distributing and synchronizing, which a single system engine
does not have. So, comparison on small graphs is actually
unfair for Spark-kCore, yet we make this comparison to
show the superiority of Spark-kCore over Graphlab imple-
mentation. We also compare our results with the EMCore
algorithm presented by J. Cheng et al. [16]. We use the

www.manaraa.com

71

980

(a) (b) (c)

Fig. 3: (a) shows the comparison of running time with number of edges. (b) and (c) shows the change in k-core value for
the amazon0601 and as-kitter graphs respectively

EMCore implementation given in [15]. We cannot compare
with MapReduce implementation of k-core decomposition
discussed in [19], because neither a publicly available im-
plementation of this algorithm is available, nor the authors
could provide their implementation.

A. Spark-kCore’s Runtime Behavior on Various Graph Met-
rics

The runtime of Spark-kCore increases almost linearly with
the number of edges. This is expected as the number of
messages in the initial iterations of the execution of Spark-
kCore is almost equal to the number of edges. This is due to
the fact that during the initial iterations, for the majority of
the vertices, their core value estimations have not yet been
settled to their exact value. However, as iteration progresses,
the number of messages drops as many nodes have their
exact core values and they do not transmit any message.
In Figure 3a, we show the execution time of Spark-kCore
in a bar chart, where each bar corresponds to one of the
graphs. The left Y-axis represents running time in minutes
and the right Y-axis represents edge counts. The bars are
sorted from left to right based on their running time. The
line graph shows the edge count for each of the graphs
represented by the bar. As we can see the execution time
shows a trend of increasing almost linearly with the number
of edges. But there are small variations to this trend for some
graphs, which can be attributed to the distribution overhead
of the framework.

B. Convergence of Spark-kCore

As part of the experiment, we also record the changes in
the value of the max k-core (Cmax(G)) with each iteration
till the value converges. Initially, the max k-core value is
equal to the maximum degree of the graph. Based on our
experiment, we see that the value of max k-core drops very
steeply in the first few small number of iterations to a value
close to the actual max k-core value of the graph. After first
few iterations, the rate of change in max k core value is slow
till it converges. Figure 3b and 3c shows that change in max
k-core value with each iteration for 2 graphs: amazon0601,
as-skitter. The X-axis represents the number of iterations and
the Y-axis represents the max k-core value of a graph for a

given iteration. These results show that although it may take
a large number of iterations to converge to the max k-core
value, we can get a very close estimate of the max k-core
value of the graph in a fraction of these iterations.

TABLE II: Running time comparison between Turi
Graphlabs and Spark-kcore

Dataset Cmax(G) Tspark(mins) TGraphLabs(mins)
as-skitter 111 1.3 41

soc-youtube 51 0.9 9.1
wiki-talk 131 1.7 18.2

amazon0601 10 1.1 0.9
roadNet-CA 3 0.75 3.5
roadNet-TX 3 0.6 3.5
soc-pokec 47 3.8 47.5

C. Runtime comparison between Spark-kCore and Turi
Graphlab

As mentioned above for this comparison we use graphs
that fit in the main memory. Among the graphs that we use
in this paper, 7 graphs qualified. The comparison results are
shown in Table II. The results show that Spark-kCore is faster
than the Turi Graphlabs, by a wide margin.

We also found out that the difference in running time of
algorithms increases with increasing number of edges. We
demonstrate this behavior in Figure 4a. In Figure 4a, the bars
represents the running time for Spark-kCore and Graphlab.
The line graph represents the edge count for the graphs in
X-axis. The left Y-axis represents running time in minutes
and the right Y-axis represents edge count.

With Spark-kCore we see a speedup of 4 to 32 times. For
example k-core decomposition of soc-pokec on Spark-kCore
took 3.8 mins and on graphlabs it took 47.5 mins resulting
in 13X speedup. Although we have a distribution factor of 8,
for large graphs we have a speedup much higher than 8. For
smaller graphs the speedup falls to 4 times due to distribution
overhead. Figure 4b shows the speed up of Spark-kCore. The
Y-axis of the plot represents the speedup factor and the bars
represent the speedup for the graphs sorted by the speedup
factor.

www.manaraa.com

72

981

(a) (b) (c) (d)

Fig. 4: (a) Graphlab Vs Spark-kCore running time comparison, (b) Speedup achieved by Spark-kCore over Graphlab,
(c)EMCore Vs Spark-kCore running time comparison and (d) Speedup achieved by Spark-kCore over EMCore

D. Runtime Comparison between Spark-kCore and EMCore

As mentioned above we also compare the the running
time of spark-kCore with EMCore implementation given in
[15]. We compare the results on graphs which are medium
to large in size. We run the comparison on 4 medium size
graph like amazon0601, wiki-talk, roadnet-CA, roadnet-TX
and two large graphs soc-pokec and soc-livejournal1. The
comparison results are shown in Table III. The results show
that spark-kcore is faster than EMCore. In Figure 4c the bars
represents the running time for Spark-kCore and Graphlab
sorted by the number of edges in the graph. The line graph
represents the edge count for the graphs in X-axis. The left
Y-axis represents running time in minutes and the right Y-
axis represents edge count. The difference in execution time
is small for medium sized graphs but for larger graphs the
difference becomes substantial.

TABLE III: Running time comparison between EMCore and
Spark-kcore

Dataset Cmax(G) Tspark(mins) TEMCore(mins)
amazon0601 10 1.1 1.68

wiki-talk 131 1.7 7.71
roadNet-CA 3 0.75 3.42
roadNet-TX 3 0.6 1.5
soc-pokec 47 3.8 14.38

soc-livejournal1 372 6.1 41.7

Figure 4d shows the speedup achieved by the Spark-
kCore for 7 different graphs. Although we are running on
a distributed system with a distribution factor of 8 we don’t
get a speedup greater than 8 times with the graphs we tested
because of the overhead of distribution, but we can see a
trend that as the size of graph grows the speedup factor also
increases suggesting that with larger files speedup factor will
also increase.

V. CONCLUSIONS

In this work, we propose Spark-kCore, a Spark based dis-
tributed algorithm for k-core decomposition. The proposed
method is scalable, and it runs on graphs that do not fit in the
main memory of a computer. Our comparison with existing
k-core implementation on other distributed platforms, such
as GraphLabs shows that our method is significantly better
than the existing methods.

REFERENCES

[1] U. Alon, “Network motifs: theory and experimental approaches,” Nat
Rev Genet, vol. 8, no. 6, pp. 450–461, Jun. 2007.

[2] T. K. Saha and M. A. Hasan, “Finding network motifs using MCMC
sampling,” in Complex Networks VI - Proceedings of the 6th Workshop
on Complex Networks CompleNet 2015, New York City, USA, March
25-27, 2015, 2015, pp. 13–24.

[3] M. Rahman, M. A. Bhuiyan, M. Rahman, and M. A. Hasan, “GUISE:
a uniform sampler for constructing frequency histogram of graphlets,”
Knowl. Inf. Syst., vol. 38, no. 3, pp. 511–536, 2014.

[4] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski, “On the
maximum quasi-clique problem,” Discrete Applied Mathematics, vol.
161, no. 1, pp. 244 – 257, 2013.

[5] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model
of internet topology using k-shell decomposition,” Proceedings of the
National Academy of Sciences, vol. 104, no. 27, pp. 11 150–11 154,
2007.

[6] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“K-core decomposition of internet graphs: hierarchies, self-similarity
and measurement biases,” arXiv preprint cs/0511007, 2005.

[7] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. Honey,
V. Wedeen, and O. Sporns, “Mapping the structural core of human
cerebral cortex,” PLoS Biology, vol. 6, p. e159, 2008.

[8] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” arXiv preprint arXiv:1001.5285, 2010.

[9] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis, “Graph clustering
and minimum cut trees,” Internet Mathematics, vol. 1, no. 4, pp. 385–
408, 2004.

[10] R. Rossi, D. Gleich, A. Gebremedhin, and M. M. A. Patwari, “Parallel
maximum clique algorithms with applications to network analysis and
storage,” arXiv:1302.6256v2.

[11] D. R. Lick and A. T. White, “k-degenerate graphs,” Canadian J. of
Mathematics, vol. 22, pp. 1082–1096, 1970.

[12] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decom-
position of networks,” arXiv preprint cs/0310049, 2003.

[13] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: ACM, 2010, pp. 135–146.

[14] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“k-core decomposition: a tool for the visualization of large scale
networks,” CoRR, vol. abs/cs/0504107, 2005.

[15] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core
decomposition of large networks on a single pc,” Proceedings of the
VLDB Endowment, vol. 9, no. 1, pp. 13–23, 2015.

[16] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in Data Engineering (ICDE), 2011 IEEE 27th
International Conference on. IEEE, 2011, pp. 51–62.

[17] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-
core decomposition,” IEEE Transactions on parallel and distributed
systems, vol. 24, no. 2, pp. 288–300, 2013.

[18] Apache.org. (2017) Graphx- spark 2.2.0 documentation.
[19] B. Elser and A. Montresor, “An evaluation study of bigdata frame-

works for graph processing,” in Big Data, 2013 IEEE International
Conference on. IEEE, 2013, pp. 60–67.

